JOINT TRANSPORTATION

RESEARCH PROGRAM
INDIANA DEPARTMENT OF TRANSPORTATION iscovery With Deivey, Y
AND PURDUE UNIVERSITY ‘L%I'%.’/

A Strategic Assessment of Needs and
Opportunities for the Wider Adoption
of Electric Vehicles in Indiana

Theodora Konstantinou, Donghui Chen, Konstantinos Flaris,
Kyubyung Kang, Dan Daehyun Koo, Jonathon Sinton,
Konstantina Gkritza, Samuel Labi

SPR-4509 ® Report Number: FHWA/IN/JTRP-2022/12 ¢ DOI: 10.5703/1288284317376



RECOMMENDED CITATION

Konstantinou, T, Chen, D,, Flaris, K., Kang, K., Koo, D. D, Sinton, J., Gkritza, K., & Labi, S. (2022). A strategic assess-
ment of needs and opportunities for the wider adoption of electric vehicles in Indiana (Joint Transportation Re-
search Program Publication No. FHWA/IN/JTRP-2022/12). West Lafayette, IN: Purdue University. https://doi.

org/10.5703/1288284317376

AUTHORS

Theodora Konstantinou
Graduate Research Assistant
Lyles School of Civil Engineering
Purdue University

Donghui Chen

Graduate Research Assistant

Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

Konstantinos Flaris

Graduate Research Assistant
Lyles School of Civil Engineering
Purdue University

Kyubyung Kang, PhD

Assistant Professor of Construction Management Technology
School of Construction Management Technology

Purdue University

Dan Daehyun Koo, PhD

Associate Professor of Construction Management
Department of Engineering Technology

Indiana University-Purdue University Indianapolis

JOINT TRANSPORTATION RESEARCH PROGRAM

Jonathon Sinton

Graduate Research Assistant
Lyles School of Civil Engineering
Purdue University

Konstantina Gkritza, PhD

Professor of Civil Engineering and Agri-
cultural and Biological Engineering

Lyles School of Civil Engineering
Department of Agricultural & Biological
Engineering

Purdue University

(765) 494-4597

nadia@purdue.edu

Corresponding Author

Samvuel Labi, PhD

Professor of Civil Engineering
Lyles School of Civil Engineering
Purdue University

The Joint Transportation Research Program serves as a vehicle for INDOT collaboration with higher education in-
stitutions and industry in Indiana to facilitate innovation that results in continuous improvement in the planning,
design, construction, operation, management and economic efficiency of the Indiana transportation infrastructure.
https://engineering.purdue.edu/JTRP/index_html

Published reports of the Joint Transportation Research Program are available at http://docs.lib.purdue.edu/jtrp/.

NOTICE

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
data presented herein. The contents do not necessarily reflect the official views and policies of the Indiana Depart-
ment of Transportation or the Federal Highway Administration. The report does not constitute a standard, specifica-
tion or regulation.

COVER IMAGES

CHUTTERSNAP. (2020, July 5). [Photograph of electric car charging fuel at power generation station]. Unsplash.
https://unsplash.com/photos/xfaYAsMV1p8

Tibor Duris. (n.d.). Euro money [Photograph]. Shutterstock. https://www.shutterstock.com/image-photo/euro-mon-
ey-coins-isolated-on-dark-515544037



TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. 2. Government Accession No.

FHWA/IN/JTRP-2022/12

3. Recipient’s Catalog No.

4. Title and Subtitle

A Strategic Assessment of Needs and Opportunities for the Wider Adoption of
Electric Vehicles in Indiana

5. Report Date
April 2022

6. Performing Organization Code

7. Author(s)

Theodora Konstantinou, Donghui Chen, Konstantinos Flaris, Kyubyung Kang, Dan
Dachyun Koo, Jonathon Sinton, Nadia Gkritza, and Samuel Labi

8. Performing Organization Report No.
FHWA/IN/JTRP-2022/12

9. Performing Organization Name and Address

Joint Transportation Research Program

Hall for Discovery and Learning Research (DLR), Suite 204
207 S. Martin Jischke Drive

West Lafayette, IN 47907

10. Work Unit No.

11. Contract or Grant No.
SPR-4509

12. Sponsoring Agency Name and Address
Indiana Department of Transportation (SPR)
State Office Building

100 North Senate Avenue

Indianapolis, IN 46204

13. Type of Report and Period Covered
Final Report

14. Sponsoring Agency Code

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The primary objective of this study was to assess the challenges and opportunities associated with the provision of appropriate
infrastructure to support electric vehicle (EV) operations and electrification across Indiana. A secondary objective of this study
was to develop a strategic plan for INDOT that outlines new business opportunities for developing EV charging stations. To
achieve these objectives, the project team assessed current and emerging trends in EV operations, particularly EV charging
infrastructure and EV demand forecasting. They also examined opportunities for the strategic deployment of EV charging stations
by identifying EV infrastructure deficit areas; investigated the impact of EV adoption on highway revenue and the feasibility of
new revenue structures; and evaluated strategic partnerships and business models. The agent-based simulation model developed
for future long distance EV trip scenarios enables INDOT to identify EV energy deficient areas for current and future energy
charging demand scenarios, and it can support Indiana’s strategic plans for EV charging infrastructure development. The results of
the revenue impact analysis can inform INDOT’s revenue model. The estimations of the recovery EV fee, the VMT fee, and pay-
as-you-charge fee that break-even the fuel tax revenue loss can be used by INDOT in pilot programs to capture users’ perspectives
and estimate appropriate fee rates and structures. The insights obtained from the stakeholder interviews can be used to enhance
preparedness for increasing EV adoption rates across vehicle classes and to strengthen the engagement of different entities in the

provision of charging infrastructure.

17. Key Words

electrification, charging infrastructure, highway revenue, taxes and
fees, business models

18. Distribution Statement

No restrictions. This document is available through the
National Technical Information Service, Springfield, VA

22161.
19. Security Classif. (of this report) 20. Security Classif. (of this page) | 21. No. of Pages | 22. Price
Unclassified Unclassified 133 including
appendices

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized




EXECUTIVE SUMMARY

Introduction

The emergence of electric vehicles (EVs) can reduce fuel
consumption, fuel emissions, vehicle operating costs, and enhance
energy security. As such, transportation agencies are encouraged
to be strategic and adapt to the ongoing evolution in vehicle
propulsion by identifying and pursuing a strategic assessment of
needs and opportunities for wider adoption of EVs. In 2020, the
Indiana Department of Transportation (INDOT) commissioned a
study to address this issue. This study is intended to investigate the
challenges and opportunities of providing appropriate infrastruc-
ture to support EV operations and electrification across the state
and to develop a strategic plan that outlines new business
opportunities for developing EV charging stations. To achieve
these goals, this study had the following objectives.

® Assess current and emerging trends in EV operations with
a focus on EV charging infrastrucre and EV demand
forecasting.

® Examine opportunities for the strategic deployment of EV
charging stations, including the identification of EV infra-
structure deficit areas and the evaluation of strategic
partnerships.

® Investigate the impact of EV adoption on highway revenue
and the feasibility of new revenue structures.

Findings

The following section summarizes the key findings and methods
involved in this study.

The research team developed a framework to identify EV
infrastructure deficit areas and analyze potential EV charging
station deployment. The simulation and GIS analysis also
identified areas that could demand significant EV charging
energy. Marion and Hendricks Counties were identified as the
top two counties where long-distance EV trips may run out of
energy. Other areas that are potential future charging deserts are
Morgan, Johnson, Madison, Bartholomew, Hamilton, Marshall,
Boone, Grant, LaPorte, Cass, White, Shelby, Huntington,
Putnam, Decatur, and Owen Counties. To minimize the impact
of energy deficient areas for the EV charging station deployment,
these counties will be considered in the future EV infrastructure
investment plan. The study outcomes also provide the geographi-
cal magnitude of the EV energy demand as defined by the
ISTDM regions. The study confirms that among the 17 ISTDM
regions, the Greater Indy area will potentially require the most EV
energy, which is followed by the SR-46 Corridor, SIDC, and
NCIRPC.

The study also created a framework to estimate the impact of
EV adoption on the fuel tax revenue and identify the optimal EV
fee based on scenarios of EV market penetration levels. The fuel
tax revenue loss for Indiana and INDOT were estimated for most
likely, optimistic, and pessimistic scenarios. In the most likely
scenario (5% EV market penetration level for light duty vehicles in
2030, 30% EV market penetration level for medium or heavy
duty vehicles in 2030), the statewide fuel tax revenue will decrease
by 21% and the INDOT fuel tax revenue will decrease by 24% by
2035, relative to 2030. To maintain the same fuel tax revenue per
vehicle, annual fees ranging from $241 (in 2021) to $342 (in 2035)
for automobiles, $344 to $435 for light trucks, $1,246 to $1,488 for
buses, $969 to $1,243 for single-unit trucks, $6,192 to $7,321 for

combination trucks, and $26 to $35 for motorcycles would be
needed over the analysis period (2021-2035).

Alternative ways to implement the estimated recovery EV fees
were also proposed. The recovery EV fee was converted to vehicle
miles travelled (VMT) ($/mile) and the pay-as-you-charge ($/kWh)
fee was converted to per vehicle class and per year. Potential
barriers to the implementations of these options (e.g., sustain-
ability, costs, and privacy concerns) and policy aspects (e.g.,
implementation process, partnerships, and equity considerations)
were examined. Although EV users may pay additional charges
that can hinder the adoption of EVs, this is only one aspect of the
user total cost of ownership, since EVs have lower operating costs.

To gather knowledge on the main aspects related to the
promotion of EVs and evaluate the strategic partnerships and
business models, semi-structured interviews were conducted online
with 23 stakeholders who represent the EV ecosystem. The
content analysis showed that stakeholder partnerships and
appropriate business models may depend on various factors,
including the type of charging (private vs. public or Level 2 vs. fast
charging); the location (local, state, or regional level); and the
vehicle type (commercial fleets vs. privately-owned vehicles). Most
interviewees supported that the provision of charging infrastruc-
ture involves mainly private entities, while public sector provides
direct or indirect incentives to users, as well as planning the
charging infrastructure, raising awareness, and educating all
stakeholders involved.

EV ecosystem stakeholders identified transit buses as having the
highest potential for electrification. Other vehicle types with high
potential are buses and small freight vehicles or delivery vans.
Equity concerns were raised related to the availability of charging
infrastructure in rural areas as well as the various fees/taxes to be
charged per EV to address the potential for decreasing fuel tax
revenue. A VMT fee was argued as a fair approach to generating
highway revenue, but privacy concerns were viewed as a major
barrier to its implementation. Lastly, the need for grid manage-
ment and renewable energy integration was pointed out as a high
priority as EV adoption and commercial electric vehicle adoption
increases.

Implementation

® The agent-based simulation model of the study was
developed for future long distance EV trip scenarios in
Indiana. The model uses unique geographical information
and model parameters for Indiana. This model enables
INDOT to identify EV energy-deficient areas for current and
future energy charging demand scenarios, and it can also
support the state’s strategic planning for the EV charging
infrastructure development.

® The results of the revenue impact analysis can inform
INDOT’s revenue model and assist decision makers in
establishing reliable plans for prospective future EV opera-
tions. The estimations of the recovery EV fee, the VMT fee,
and pay-as-you-charge fee can be used by INDOT in pilot
programs to capture users’ perspectives and willingness-to-
pay and to estimate appropriate fee rates and structures so
that sufficient revenue is raised and public acceptance is
achieved.

® The study proposed an EV recovery fee to offset the revenue
loss from fuel tax. It is anticipated that the revenues from the
EV recovery fee will be split between the state and the local
governments. A state share of 75% or higher will ensure that
INDOT’s revenues move beyond break-even to a surplus.

® Implementing the recovery EV fee as an annual flat fee for
EVs may generate opposition from the public and road



users, particularly commercial vehicles. Therefore, to offset
the gasoline revenue loss, a VMT or pay-as-you-charge fee
may be more appropriate and equitable. To address equity
further, such fees could be adjusted to account for weight.
To facilitate implementation, the agency must develop
appropriate technology solutions to address privacy con-
cerns.

Extensive public outreach and education should be under-
taken to inform users about the overall long-term cost
savings associated with EV use, which can help earn public
support. Furthermore, the best combination of alternative
policy options can be identified through pilot programs. This
study highlights an opportunity to prepare INDOT for
participating in pilot programs on a road usage charge,
following the examples of other states.

® The insights obtained from the stakeholder interviews can

be used to better prepare for increasing EV adoption rates
across vehicle classes and strengthen the engagement of
different entities in the provision of charging infrastructure.
Among other things, collaboration between utilities and
policy makers is needed to plan for increasing EV demand
(especially for commercial vehicles that have increased power
requirements). The planning process may consider making
upgrades to the transmission and distribution network; grid
management technologies, such as vehicle-to-grid; integrated
plans for renewable energy projects; and new tariff structures
to reward charging behaviors and investigation of the
impacts of EV demand on transportation system operations.
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1. INTRODUCTION
1.1 Problem Statement

Transportation is recognized as the final frontier for
major advancement in energy efficiency. In the United
States (U.S.), the transportation sector accounts for
29% of greenhouse gas emissions (EPA, 2019). As a
result, awareness of the environmental impacts of traffic
is growing rapidly. Efforts are being made towards
reducing emissions, including the improvement of
vehicle and fuel technology as well as the promotion
of alternative, sustainable modes of transportation. The
emergence of electric vehicles (EVs) is among those
technological innovations that can reduce fuel con-
sumption, emissions, and vehicle operating costs.

Transportation agencies are encouraged to be
strategic and adapt to the ongoing evolution in vehicle
propulsion. The inevitable transition from diesel and
gasoline internal combustion engine vehicles to EVs
may offer various benefits to Indiana. The benefits
include opportunities (1) to encourage operations on
the existing highway system to be more environmen-
tally sustainable, (2) to improve air quality by reducing
emissions of criteria air pollutants as well as to increase
fuel savings that can become additional disposable
income which may be spent mostly in the local eco-
nomy, creating additional jobs in the state, (3) to revise
and enhance highway financing as a result of dwindling
revenues caused by EVs. These prospective benefits
motivate the development of new systems to accom-
modate EV demand.

However, the EV market is developing slowly mainly
due to reasons including range anxiety concerns,
particularly for larger light duty vehicles and heavy
duty vehicles. From a demand perspective, there is a
need to develop reliable estimates of the growth in EV
demand and operations. From a supply perspective,
there is a need to assess the current state of EV sup-
porting infrastructure, and identify additional invest-
ments that are needed, as well as define the role of the
private sector. As Indiana proceeds to the next step of
transportation electrification, there is a critical need for
EV charging infrastructure which, at any given point in
time, can serve the growing EV demand with limited
situations of capacity underutilization (excess supply)
or station queuing and delay (excess demand).

Moreover, the state’s revenue is largely based on fuel
taxes. These funds were mainly distributed to state
highway road construction and improvement funds as
well as local road and bridge matching grants. Recog-
nizing the fast-growing market share of EVs in Indiana,
it seems reasonable to be concerned that there will be
declining fuel tax revenues tax, and therefore, inade-
quacy of highway funding in Indiana.

Against this background, the Indiana Department of
Transportation (INDOT) commissioned this study to
assess the demand (needs) and supply-related opportu-
nities for wider adoption of electric vehicles in Indiana.
It is anticipated that addressing the demand and supply

issue regarding EV operations in Indiana will put the
state in a better position to also plan for other emerging
transport technologies that are synergistic with EV
operations, including connected and autonomous
vehicles, and shared mobility. To achieve this, it would
also be essential to explore and advance opportunities
for INDOT engagement with the private sector and
utilities to enhance the state’s preparation for EV
operations. Overall, the EV initiative is consistent with
INDOT’s strategic plan (McGuinness, 2019), which
includes restructuring the state highway infrastructure
systems regarding EV expansion, public charging
station infrastructure, and financial income structure.

1.2 Objectives

The objectives of this study are to investigate the
challenges and opportunities associated with the provi-
sion of appropriate infrastructure to support EV
operations and electrification across the state and
develop a strategic plan for INDOT that outlines new
business opportunities for developing EV charging
stations. To achieve this objective, the research
approach of this study involves the following.

® Assessing the current and emerging trends in EV
operations, with a focus on EV charging infrastructure
and EV demand forecasting.

® Examining opportunities for the strategic deployment of
EV charging stations, including the identification of EV
infrastructure deficit areas and the evaluation of strategic
partnerships.

® Investigating the impact of EV adoption on highway
revenue and the feasibility of new revenue structures.

The study results can guide INDOT regarding
strategic partnerships and enhanced infrastructure
preparedness for prospective EV operations in the
coming future, as well as inform the next generation of
INDOT revenue model. Addressing the demand and
supply issue regarding EV operations in Indiana will
benefit the state by placing it in a better position to plan
for this growing technology. The implementation of the
research outcome will also advance the state’s economy
by enhancing the INDOT’s revenue structure with the
conjunction of public and private sector’s participation.
As this study provides guidance for the strategic
deployment of EV charging infrastructure, significant
environmental benefits and economic development
potential along the EV infrastructure are also expected.

1.3 Organization of the Report and Work Plan

The work plan of the project is reflected in the
structure of this report, which is as follows.

Chapter 2 reviews literature on EV types, charging
methods and charging behavior, EV demand forecast-
ing studies and tools, EV charging infrastructure
studies, studies on stakeholders’ views about electrifica-
tion, and impact of EV adoption on highway revenue.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/12 1



Chapter 3 examines current trends on electrification
and current electrification projects within Indiana as
well as the current state of Indiana’s electric grid.

Chapter 4 discusses the framework developed for
identifying EV infrastructure deficit areas and for anal-
yzing the potential locations for EV charging station
deployment.

Chapter 5 presents the financial analysis conducted
to quantify the impact of EVs on state highway revenue
and examine potential funding mechanisms to mitigate
the decline in revenues generated.

Chapter 6 describes the process and results of inter-
views conducted with multiple stakeholders for the
evaluation of strategic partnerships and business models
for the provision of EV infrastructure.

Chapter 7 provides a summary of the key findings
and implications, limitations and recommendations for
future work.

2. LITERATURE REVIEW

This chapter presents a review of electric vehicle
(EV) types, charging methods and charging behavior
(Sections 2.1-2.3); EV demand forecasting studies and
tools (Section 2.4); and EV charging infrastructure
studies (Section 2.5). Additionally, this chapter sum-
marizes previous work on stakeholders’ views about
electrification (Section 2.6) as well as the impact of
EV market on highway revenue (Section 2.7). Lastly,
a summary of the chapter is provided in Section 2.8.

2.1 EV Types

EVs use electricity stored in their batteries to improve
vehicle efficiency and are classified in three main vehicle
types that vary in range and capability (Liao et al., 2017,
U.S. Department of Energy, n.d.c.).

Hybrid Electric Vehicles (HEVs) are vehicles include
both a conventional internal combustion engine and a
battery system. HEVs are based on gasoline to operate
the internal combustion engine when additional range
is needed but can also be based solely on electricity for a
certain distance. HEVs do not have the ability to be
plugged in to recharge their battery packs. Their
batteries can be recharged while driving on engine
power or by reclaiming energy through regenerative
braking.

Plug-in Hybrid FElectric Vehicles (PHEVs) are
vehicles use gasoline to power the conventional internal
combustion engine and batteries to power the electric
motor. The main difference compared to HEVs is that
the batteries of PHEVs can be charged using external
electric charging equipment in addition to regenera-
tive braking. PHEVs typically run on electric power
and automatically switch to use the internal combus-
tion engine when the battery is almost depleted. Most
PHEVs can travel around 20-40 miles operating in
all-electric mode.

Plug-in Electric Vehicles (PEVs) or Battery Electric
Vehicles ( BEVs) are vehicles have no internal combus-
tion engine and are based only on power from their
battery packs. Their battery is charged by plugging the
vehicle into an external electrical power source. Typical
driving ranges for BEVs vary between 150-300 miles.

2.2 Charging Methods

This section discusses the various charging methods:
stationary plug-in charging, stationary wireless char-
ging, dynamic conductive charging, dynamic wireless
charging, and battery swapping.

2.2.1 Stationary Plug-in Charging

The most common form of EV charging is the
charging station, where vehicles are parked and charged
by an external electric power supply. Electricity can be
supplied by the following types of charging stations
(U.S. Department of Energy, n.d.a).

Alternating Current (AC) Level 1 uses standard 120V
AC residential power and only requires a charging cable
that comes with the EV. The charge time is slow
at only 3-5 miles per hour of charging (around 8 to
12 hours, depending on the vehicle’s battery).

AC Level 2 uses 240 V AC power to enable faster EV
battery recharging, providing 10-20 miles per hour of
charging (around 4 to 6 hours).

Direct Current Fast Charging (DCFC) converts high
voltage AC to 480 V DC power for accelerated charg-
ing speeds. It can charge an EV’s battery to 80% of full
capacity in 20-30 minutes.

In addition to standard DCFC chargers, there also
exist specially designed DCFC chargers for buses.
These chargers are designed to attach to the top of a
bus semi-autonomously without the driver needing to
leave the vehicle (Eudy et al., 2016). These are ultra-
high-powered chargers and, in the case of that study,
they can charge a bus in under 10 minutes.

It is recognized that these different charging levels
serve different purposes with optimal use scenarios.
Due to its low power consumption, Level 1 charging is
most appropriate for at-home charging, though some
public uses such as charging vehicles in long-term
parking at airports may still be appropriate (Smith &
Castellano, 2015). It may also be used at some work-
places. Level 2 charging is the most flexible, as it is
often used for both at-home charging as well as charging
in public areas. Public Level 2 charging is most suitable
in areas where vehicles may be parked for a couple of
hours, such as malls, workplaces, and shopping centers
(Smith & Castellano, 2015). DCFC is most suitable to
drivers that must significantly increase their state of
charge in a short amount of time. Due to its high-power
levels, it is only suitable for public use. This includes
areas along highways, charging stations in cities, and
some shopping areas (Shareef et al., 2016).
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DCFC has seen rapid technological advancement in
recent years, spurred by private companies. In 2016, the
SAE had two classifications of DCFC, with the higher
level outputting 40-100 kW (Shareef et al., 2016). A 90
kW charger, for example, can provide 90 miles of range
in 20 minutes of charging (Smith & Castellano, 2015).
Currently, however, major charging companies such as
Tesla and Electrify America offer charging at over
double these power levels. Tesla superchargers can
charge vehicles at up to 250 kW, providing 200 miles of
charge in 15 minutes (Tesla, n.d.). Electrify America
offers stations with charging powers varying from
50-350 kW of power (Electrify America, n.d.). How-
ever, it is important to note that while higher charging
power yields faster recharge time, the vehicle must also
be able to accept high power levels. Older EVs cannot
charge at levels above 50 kW (EV Safe Charge, n.d.), so
a 350 kW charger will not provide them with any added
benefit over a 50 kW charger.

The costs related to AC versus DC charging are also
drastically different. Level 1 charging is the least expen-
sive type, as it can be provided via a standard 120V
electrical outlet. A single Level 2 charger can cost in the
range of $400-$6,500K, while a single DCFC port costs
between $10-$40K. The wide range of these values is
due to the level of sophistication of the charger. This
includes features such as the number of charging ports
per device, point-of-sale systems, energy monitoring
and management systems, systems to communicate
with the electric grid and/or the provider’s network,
aesthetic design, and other features (Smith & Castel-
lano, 2015). Additionally, installation costs will vary
depending on the location.

DCFC costs are substantially higher due to the
complexity of the charging station. DCFC stations
must transform the electric grid’s current from AC to
DC prior to delivering it to the vehicle. In Level 1 and 2
charging, the station does not perform this transforma-
tion. This also necessitates more regular maintenance
on DCFC stations compared to AC stations (Shareef
et al., 2016; Smith & Castellano, 2015).

While DCFC provides much more rapid charging
than its AC counterparts, it comes with a number of
additional issues. One problem is that the high power
required for DCFC chargers can place strain on the
electrical grid at peak usage times and degrade grid
components such as transformers (Yilmaz & Krein,
2013). This will likely require some combination of
regulatory framework, infrastructure improvements,
and coordination methods if DCFC becomes wide-
spread. It should be noted that Level 2 charging can
also cause a similar scenario, but DCFC’s higher power
levels make it more susceptible to this issue. Addi-
tionally, the high power levels of DCFC will cause an
increased rate of battery degradation in vehicles if used
consistently (Shareef et al., 2016).

There have been numerous proposed methods to
alleviate the potential strain caused by DCFC on the
electric grid. These include the use of coordinated
charging, bidirectional charging, and energy storage

devices. Coordinated charging allows vehicle to grid
communication to alter charging times and power levels
so as not to overstrain the grid (Yilmaz & Krein, 2013).
This typically attempts to focus most charging in the
nighttime hours when the grid sees less strain (Duan
et al., 2014). Bidirectional charging is a method that
allows the grid to charge the vehicle, but also allows the
vehicle to add charge back into the grid (Yilmaz &
Krein, 2013). At times of high grid strain, the vehicle
battery provides power back into the grid. When this is
performed en masse, grid strain can be alleviated. This
can be considered a subtype of coordinated charging.
Energy storage devices have also been proposed for the
sites of charging stations (Falvo et al., 2014). These
devices could act as a reservoir to mitigate direct strain
on the electric grid during times of peak charging.
While there has been continual research in these areas
(e.g., Davis & Bradley, 2012; Nimalsiri et al., 2021;
Yang et al., 2021), it is not yet apparent which of these
methods may be implemented in the future, nor is it
obvious how such an implementation would be structured.

Additionally, it should be emphasized that DCFC
may not be widely needed by typical commuters.
Research has shown that most charging is anticipated
to occur at the driver’s home or workplace (Li et al.,
2020), and may be most appropriate more long-distance
trips, rideshare drivers (Smart et al., 2020), and drivers
without access to home or workplace charging. How-
ever, it should also be noted that the presence of DCFC
can reduce the effect of range anxiety (Ashkrof et al.,
2020), which is considered an impediment to EV
uptake. Table 2.1 shows the comparison of the three
charging levels discussed.

2.2.2 Stationary Wireless Charging Stationary

Wireless charging systems use electromagnetic induc-
tion to transfer electricity into an EV, instead of using a
traditional charging cable. Charging is achieved while
the EV is not operational and parked for an extended
period in stationary modes, such as in a parking lot or
garage (Jang, 2018). A wireless charging station uses
charging coils embedded in the ground (charging pads)
to convert electricity from the grid into a controlled
magnetic field, which then induces a current in a
receiving coil attached to the underside of a vehicle
(Covic & Boys, 2013).

This charging method can ease the user interaction
with the grid, can offer an automatic operation without
user intervention and is safer compared to conductive
charging where cables carrying high electrical current
are utilized (Trivino et al., 2021). A major concern for
wireless EV charging technology is the efficiency lost by
the air gap between the charging pad and the receiving
coil (Jeong et al., 2015). Additionally, the cost of instal-
ling the charging equipment for this technology is higher
compared to plug-in charging and has been reported to
range between $40-60K/charger (Jang et al., 2016).

Stationary wireless charging of EVs has become
commercially available. Advances in the charging
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TABLE 2.1
Comparison of charging levels

AC Level 1 AC Level 2 DCFC
Charging Power (kW) 1.4-1.9 3.4-19.2 24-350
Charging Rate 4-6 mi/h 10-60 mi/h 24 mi/20 minutes (24 kW)
200 mi/15 minutes++ (250 kW)
Cost ($) 300-1,500 400-6,500 10,000-40,000

Application Home, long-term parking,

some workplace charging

Home, workplaces, retail
locations, other short-
medium term parking
locations

Provide large amounts of charge in short
timeframe (e.g., for travelers, TNC drivers,
fleet drivers, vehicle owners without access
to home or workplace charging)
Determination of optimal locations is quite
important

technology have made it feasible for multiple companies
to develop and provide this type of product to the
market. Some of the primary companies with com-
mercial stationary wireless charging solutions are
WiTricity, Qualcomm, Conductix Wampfler, Momen-
tum Dynamics, and HEVO power, promising power
transfer as fast and efficient as the conventional plug-in
charging.

WiTricity, which is a startup from the Massachusetts
Institute of Technology, provides charging rates for
static inductive wireless charging from 3.6 to 11 kW.
The highest efficiency reported is 94% from grid to
battery using a circular coil architecture. Tolerance to
parking misalignment of +/-10 cm side to side and
+/- 7.5 cm front to back. The charging pad can be instal-
led on-ground or buried in pavement (WiTricity, n.d.).
WiTricity have also recently acquired Qualcomm’s EV
wireless charging unit Halo (WiTricity, 2019). Halo was
tested for dynamic in Versailles, France, through the
FABRIC project (CORDIS, 2018). Conductix Wamp-
fler offers contactless charging solutions for industrial
applications such as transfer cars, skillet lines with lift
tables, Automated Guided Vehicles (AGV) or Rail
Guided Vehicles (RGV). Their solutions operate at
20 kHz (Conductix Wampfler, n.d.). Momentum
Dynamics developed high power inductive charging
technologies for the automotive and transportation
industries that is capable of delivering energy safely
through air, water, and ice (all weather conditions).
They offer up to 75 kW chargers for EVs and up to 200
kW charging systems for mass transit (Momentum
Dynamics, n.d.). HEVO power also offers a 10-kW static
charger.

SAE International published SAE J2954 Recom-
mended Practice (RP) for Wireless Power Transfer
(WPT) for Light Duty Plug-in/EVs and Alignment
Methodology in May 2016, and its latest revision was
published in April 2019 (SAE International, 2019). The
RP defines acceptable criteria for interoperability,
electromagnetic compatibility, EMF, minimum perfor-
mance, safety, and testing for wireless charging of light
duty electric and plug-in EVs. Four levels of charging
according to power levels are categorized up to 22 kW.
It supports home (private) charging and public wireless
charging. A standardized single coil test is developed

for power classes 1, 2, and 3, up to 11 kW (1 through 3)
using circular topology but also provides a way to
demonstrate compatibility to other coil topologies.

For more information about the standards of this
charging type, the interested reader can refer to
Konstantinou et al. (2021).

2.2.3 Dynamic Conductive Charging

An alternative mechanism for EV charging is the
dynamic charging (or in-motion charging), also referred
to as charging-while-driving. This subsection refers to
dynamic charging where electric power is transmitted
by conductive energy transfer through overhead wires
(catenary) or rails imbedded in the roadway. Originally
developed for electric traction on railroads and in use
on many passenger rail systems, these technologies have
recently been adapted for use in EVs. Siemens opened
the first highway with dynamic conductive charging
capability (eHighway) in Sweden (Siemens, n.d.) and
Scania manufactures compatible electric trucks with
pantographs (Siemens, 2017). In Sweden, three dynamic
conductive charging solutions are being developed and
tested: Alstom APS, Elways, and Elonroad (Collin et al.,
2019).

2.2.3.1 Catenary. The catenary system is based on
overhead wires connected to electrical substations along
the road corridor. A pantograph is located on the top
of the vehicle and contacts the wires as it drives,
supplying electricity to the vehicle for charging and
propulsion. Depending on the operation mode, the
pantograph can be lowered or raised automatically or
manually while the vehicle is moving, providing the
flexibility to change lanes, cross under bridges, or drive
on roads that lack catenary (Jelica, 2017). This flexibility
is the main difference of this technology with the
technology used for many years for trains and trolley
buses. This system can be completely incorporated into
existing road infrastructure, without significant modi-
fications. It is also able to offer high power transfer
efficiency rates of over 80% (Siemens, 2017). Certain
safety regulations and standards apply for these systems
to prevent from hazards. For example, overhead wires
should be installed in a height of at least 20 feet allowing
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for vehicles only with a corresponding size to connect to
them (e.g., trucks and buses) (Andersson & Edfeldt,
2013). One of the main advantages of this charging
system 1is that it can provide high levels of power to
heavy duty vehicles and that it constitutes the most
mature solution compared to other dynamic charging
methods (Collin et al., 2019). However, the catenary
system is only suitable for heavy duty vehicles, can be
susceptible to damage and defects, and may create
negative visual impact (Bateman et al., 2018). According
to case studies that have tested this technology, its
cost may vary from around $2-$4 million/lane-mile
(Bateman et al., 2018).

2.2.3.2 Rail. In the rail system, a conductive rail that
is located on the top of the road supplies the power to
the vehicle. This rail is in turn supplied by and is
connected to the electrical grid via transformer
substations installed along the roadway at a certain
density (Jelica, 2017). The rail is divided into different
segments that are activated when a vehicle is detected
on them (Konstantinou, 2019), eliminating the
possibility of accidental electrocution. Vehicles have
moveable arms which automatically lower to contact
the electrified rail in the road and move horizontally to
stay centered on the rail. The conductive rail approach
has a total system efficiency of approximately 82%
(Viktoria Swedish ICT, 2013). One of its advantages is
that the rail system can be compatible with all types of
vehicles and that its components are easily accessible
for inspections (Bateman et al., 2018). It is also expec-
ted to have a minimal impact on the road in terms of
function and maintenance, as rational solutions for
installation and maintenance are being developed and
tested by different companies around the world that
are interested in this concept (Konstantinou, 2019).
However, there are safety concerns for motorcycle users
passing over the conductive rail system (Bateman et al.,
2018). Additionally, as with the conductive overhead
system, it may be vulnerable to damage. The cost of the
conductive rail system can range from around $800K-—
$3 million/lane-mile (Bateman et al., 2018).

For more technical details and case studies about the
conductive overhead or rail charging systems, the
interested reader can refer to Bateman et al. (2018),
Collin et al. (2019), and Konstantinou (2019).

2.2.4 Dynamic Wireless Charging

Dynamic wireless charging is achieved through
wireless power transfer while the EV is in full motion.
The main components of this technology are the same
as in the stationary wireless charging system but in this
case a series of charging pads are embedded along the
roadway (power track or electric road) to enable
dynamic charging. The embedded coils can be powered
individually and energized only when an equipped EV
passes on top of each coil (Choi et al., 2015).

Dynamic wireless charging can be suitable for all
vehicle types, is safer for users and maintenance workers,
and is less susceptible to damage since it is installed in the
roadway pavement (Bateman et al., 2018). One of the
main challenges of the wireless charging technology
though is the high initial investment cost (e.g., Ahmad
et al., 2018; Konstantinou et al., 2019; Mohamed et al.,
2019). According to Bateman et al. (2018), the cost of
implementing the technology may vary from around
$900K-11 million/lane-mile and depend on multiple
factors such as the accessibility to the power network,
the type of installation, and materials of the charging
infrastructure. Nevertheless, the high initial investment
cost can be compensated by reducing the battery size and
increasing driving range due to the elimination of
recharging downtime (Mohamed et al., 2019). As in the
stationary wireless charging method, dynamic wireless
charging faces the challenge of the power transfer
efficiency through the air gap.

Dynamic wireless charging is still not commercially
available due to multiple challenges in infrastructure
modification and the requirement of highly efficient
power transfer (Patil et al., 2017). Different studies
across the world focus on exploring this type of
charging technology and are being conducted by the
University of California-Berkeley (the Partners for
Advanced Transit and Highways project), the Utah
State University (Electric Vehicle & Roadway (EVR)
Research Facility and Test Track; Advancing Sustain-
ability through Powered Infrastructure for Roadway
Electrification Engineering Research Center) and the
Oak Ridge National Laboratory (National Transpor-
tation Research Center). Pilot programs outside the
U.S. are found in Italy and France (FABRIC project),
Spain and Germany (Unplugged Project), Israel (Elect
Road), Sweden (Smartroad Gotland Project) and South
Korea (OLEV by the Korea Advanced Institute of
Science and Technology). Examples of charging effi-
ciency may come from case studies and tests that have
shown capabilities to dynamically charge a light duty
EV at up to 2040 kW at highway speeds with around
80% charging efficiency (FABRIC, 2017) and a hybrid
electric truck at 180 kW, with around 89% energy
power transfer efficiency (Sundelin et al., 2016). For
more technical details, information on the case and
research studies and costs of the dynamic wireless
charging technology, the interested reader can refer to
Konstantinou et al. (2021).

2.2.5 Battery Swapping

Battery swapping is a charging technique where a
battery with low charge is removed from a vehicle and
replaced with a full battery. This technique has received
attention within the research community, though it has
only been implemented in limited cases.

The benefits of battery swapping are that it is a fast
procedure for the vehicle and that there is not extensive
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strain on the electric grid. The time to remove and replace
the battery from a vehicle is a matter of minutes and is
even a faster process than DCFC. The expended battery
can then be charged at the station at low power levels
and at off-peak hour to avoid straining the electric grid
(Zheng et al.,, 2014). There are several issues, how-
ever. One major problem is that it is capital intensive, as
there must be a battery surplus and as the stations are
more complex than typical charging stations, with costs
estimated at about $2.3 million per station (Budde
Christensen et al., 2012). Additionally, swap stations
require that vehicles have nearly identical battery archi-
tecture to integrate with the automated swapping system
(Ahmad et al., 2020). Finally, there is the issue as to who
owns the batteries (Ahmad et al., 2020).

There have been two instances of commercial use of
battery swap stations for personal vehicles. The Israeli
company Better Place failed in early 2013, but the Chinese
company NIO currently sees success. This difference can
be traced to how their business models differed in how
they addressed the problems with battery swap stations—
particularly the requirement of identical battery architec-
ture. Better Place required that customers purchase
vehicles from them and also, lease the Dbatteries.
However, Better Place only offered a single Renault
Sedan, as they were unable to partner with any other car
manufacturers. This is because manufacturers did not
want to limit their battery architectures to meet Better
Place’s requirements (Budde Christensen et al., 2012).
Better Place also was unable to convince Renault to make
other vehicles that would be compatible with the stations.
The Renault Sedans did not sell well in Better Place’s
markets, and Better Place’s capital expenditures on
swapping stations vastly outweighed revenue, ultimately
leading to bankruptcy (Berman, 2013; Motavalli, 2013;
Pearson & Toth Stub, 2013). Unlike Better Place, NIO
does not have the issue of convincing vehicle manufac-
turers to build standardized batteries. This is because NIO
is a manufacturer itself (NIO, n.d.). As a result, it sells
multiple vehicles that are compatible with the swap
stations that it also maintains. This indicates that while
there are barriers to the use of battery swap technology for
private vehicles, they are surmountable.

The majority of battery swapping research focuses on
applications for fleet vehicles. There have been numer-
ous studies on its use for transit buses Zheng et al., 2014
(e.g., Chao & Xiaohong, 2013; Zhang et al., 2018).
Additionally, battery swap buses have been implemen-
ted in both China and South Korea-Edison Motors is a
Korean company that currently offers battery swap
buses. This is a promising area because fleet vehicles
generally will not face the problems that face battery
swapping. Fleet vehicles will generally have similar-or
the same-battery architecture, and the issue of battery
ownership is rendered moot.

2.2.6 Comparison of Charging Methods

Table 2.2 compares the charging methods described
in the previous sections.

2.3 Impact of Value of Travel Time on Charging
Behavior

Given the varying charging methods and their requisite
charging time (presented in Section 2.2), when choosing a
charging method to deploy, it is imperative to consider
how drivers may value the time needed to charge a
vehicle. Quantifying an EV driver’s value of travel time
(VOTT) as related to the need to pause a trip to charge
can be useful when considering placement of additional
charging stations. While it is recognized that there may be
high levels of variance to VOTT, it is also noted that
there does not appear to be a clear, systematic reasoning
for that variance (Spurlock et al., 2020). However, despite
this finding, there appears to be a general range found for
VOTT as relating to EV charging.

One report, evaluating the impact of VOTT on
charging network requirements, estimate a VOTT in
the range of $5-$50/hr with a base case of $18/hr
(Ghamami et al., 2020). This report’s findings noted
that increased VOTT increases the cost of the charging
network, as more chargers must be built to remove
delays due to detouring to reach chargers and queueing
at a charger. However, total delay cannot decrease
beyond the time needed to charge.

Another report (Ashkrof et al., 2020) estimates
VOTT as $11.78/hr. However, this also finds that EV
travelers appear more sensitive to monetary cost than
time cost when choosing a route. Sun et al. (2020) does
not estimate the VOTT of drivers, but instead estimates
the VOTT ranges for charging stations and dynamic
charging to be dominant. This study finds that charging
stations are dominant with VOTT less than $21/hr
while dynamic charging is dominant with VOTT
between $24-$30/hr. Additionally, the study by Sun
et al. (2020) develops an optimization model to
determine where to deploy charging stations versus
dynamic charging lanes while considering driver VOTT.

The SMART Mobility Advanced Fueling Infra-
structure Capstone Report (Smart et al., 2020) does
not speccify values for VOTT, though it provides
important insight for commercial EV users. It notes
that time truckers spend charging while on a route is
included in the hour regulations for the amount they
may work in a day. Additionally, the time that TNC
drivers spend charging may be considered a lost
revenue-earning opportunity. Thus, it appears that in
the case of commercial drivers, one may estimate their
VOTT for charging as the value that is lost from not
driving.

2.4 EV Demand Forecasting Studies and Tools

For an accurate prediction of EV demand, it is
necessary to conduct a comprehensive review of the
state of the art in EV demand modeling. This section
focuses on presenting studies on EV demand forecast-
ing as well as currently available forecasting tools.

Table A.1 of Appendix A includes research studies
related to EV demand forecasting. These research
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studies found from the literature are either based on
surveys to calculate demand or use already existing data
fed into mathematical programming/optimization or
other models to provide an estimation of the current
or future demand. According to the table, the use of
discrete choice and Bass diffusion models as well as the
S-curve is more popular for calculating EV market
penetration compared to the use of mathematical or
agent-based models in these studies. Additionally,
almost all studies focus on projections for light duty
vehicles, indicating that there is limited research related
to heavier vehicles. The research studies report the EV
market penetration as a percentage of new vehicle sales
or as a percentage of vehicle registrations or as absolute
numbers. Thus, comparing the different EV projections
becomes difficult. Overall, though, there is a wide range
in the projections of EV demand found in the different
studies, mostly depending on the location, policies (e.g.,
subsidies) and availability of charging infrastructure.

Table A.2 of Appendix A includes a list of tools that
either directly forecast EV sales or use discrete choice
and agent-based modeling frameworks. The main inputs
used in the tools are vehicle and technology attributes,
vehicle miles travelled, penetration rates, mobility and
charging data, characteristics of charging infrastructure,
consumer preferences, socio-demographic characteris-
tics of drivers and policies. Some of these tools are pub-
licly available and at least documented (e.g., ADOPT,
POLARIS) and some are not publicly available (e.g.,
Compass, PEV Roadmap). The tools shown in Table
A.2 mainly focus on providing outputs related to light
duty vehicles, except for the EV Hub and SERA tools
that also consider medium- and heavy-duty vehicles.
Nevertheless, the modeling frameworks and assump-
tions used as well as the main inputs of all tools can
provide guidance on building new models related to
needs for EV demand and infrastructure. Lastly, the
scale of most tools is global, regional, or national and
only a few tools can provide results per state or zip code.
Thus, there is a need to develop more models which can
consider local scales.

2.5 EV Charging Infrastructure Studies

The electrification of the existing transportation
infrastructure system requires substantial upgrades to
overcome two major concerns from drivers and the
public. The first is driver’s range anxiety based on the
current technology level of the EV. Drivers must
consider their limited driving range to plan their long-
distance trips. The second concern is the availability of
the EV charging infrastructure in the proximity of the
planned transportation networks (Bai et al., 2021;
Bonges III et al., 2016; Jung et al., 2015). These two
concerns need to be addressed before the electrification
transition to enhance preparedness for EVs and drivers.

Several studies investigated the impact of the existing
infrastructure on demand for EV charging stations by
enhancing methodologies and developing model archi-
tectures. Pagany et al. (2019) proposed a positioning

method based on user destination. The location was
determined by the number of vehicles in the area, the
number of drivers, the activity time, and other factors.
Due to the small number of EV users, the fossil fuel
vehicle data was tracked and assumed that EV users
had the same vehicle usage habits. Su et al. (2018)
developed the Agent-CA model to simulate the EV
driving process as well as evaluate the EV charging load
and random traffic conditions and predict the size and
location of the charging stations. A software called
CRUISE was used to calculate the power consumption
under different conditions. The Monte Carlo method
was implemented to calculate the charging demand,
which was shown in heat maps, so as to evaluate the
dynamics of EV charging loads and random traffic
conditions, and design different strategies to reduce
charging time. This Agent-CA model is limited to small
scale short-distance trips only. Huang et al. (2016)
created a model to design and locate charging stations
with three different scopes (work, shopping, and
dining). The authors used traffic analysis zone and
polygon segmentation techniques to optimize model
accuracy. By classifying the three levels, the charging
speed and price were calculated to improve the utiliza-
tion rate, using ArcGIS. Ge et al. (2011) considered
using the grid partition method to partition regions,
and a genetic algorithm to analyze the traffic density
and the capacity of charging stations to predict the
optimal locations. However, the traffic density of road
network was not considered in the region division part,
leading to a local optimal solution and not a global
optimal solution. Based on demand priority and the
usage of the existing gas station, Wang et al. (2010)
designed a solution algorithm to develop charging
stations. The priority of charging station was deployed
according to the busy condition of the road section, but
the demand between a gas station and EV charging
station was assumed to be the same.

Based on trip data, many studies have tried to
simulate scenarios or analyze requirements in a more
direct way. Gan et al. (2018) used the Voronoi Diagram
to divide the urban area and studied the trip data of
users transferring bicycles in the city to redefine the
city’s functional zones. Using trip-based data, the
behavior of ending the shared bicycle trip and changing
to another bicycle to continue riding was detected. By
researching this phenomenon, a more reasonable
distribution of city functional areas was redesigned
and proposed. In order to solve the costly problem of
monitoring network-wide traffic dynamics with the link
resolution, a probabilistic framework to estimate net-
work-wide link travel time with trip-based data from
automatic vehicle identification detectors was studied in
Zhang et al. (2018). With the help of the accuracy of
trip-based data, the travel time of each trip was allo-
cated at a lower cost, and the average link travel time
within the network was estimated online accordingly.
Leclercq et al. (2017) studied on-street parking search
according to the trip-based aggregate dynamic traffic
model. According to trip-based data, the behaviors of
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different driver categories were simulated, and the
relationship between travel distance to park and the
parking occupancy was studied based on the parking
strategy, starting point and destination data. Gong et al.
(2008) modeled the trip-based data of traffic informa-
tion to estimate the driving cycle of the power manage-
ment optimization of plug-in hybrid EVs and used
the dynamic programming algorithm to strengthen
the charge-depletion control. Through the simulation
experiment, compared with experiments that were not
based on historical data, historical data improved the
accuracy of battery management optimization.

In view of the above, it can be concluded that most
previous studies only used scenarios in short-distance
city level trips, one-way trips, and existing infrastruc-
ture within the city limit. This highlights the need for
a more realistic simulation framework that takes into
account long-distance, round trips and charging infra-
structure on a wider scale in order to overcome range
anxiety.

2.6 Review of Previous Work Soliciting Stakeholders’
Views about Electrification

The deployment of charging infrastructure is a topic
with high uncertainty to date, as both the public and
private sectors have been involved in the provision of
charging infrastructure and the roles of the different
actors in this market is not clear (e.g., Hall & Lutsey,
2017; Nigro & Frades, 2015). Santos and Davies
(2020) examined the responses from 143 participants
in Germany, Austria, Spain, the Netherlands, and the
UK who were asked to rate how positively or negatively
a series of campaigns and approaches would influence
purchasing of EVs. The results showed improvement of
charging infrastructure, purchase subsidies, pilots/trials/
demonstrations, and tax incentives as the most posi-
tively viewed incentives with other proposed incentives,
such as differential taxation or public transport poli-
cies having fewer positive responses from the survey
participants. In many cases, the survey subjects noted
that a lack of existing strategies and infrastructure in
their country or region triggered negative responses to
the questions rather than a lack of belief in the system
itself.

Wolbertus et al. (2020) used a quantitative metho-
dology, the Q-methodology, which is based on quali-
tative inputs, in order to understand stakeholders’
perspectives on the EV charging infrastructure in the
Netherlands. Researchers revealed their main ideas and
perspectives for the future of charging infrastructure by
compiling the responses of 39 representative stake-
holders of the EV ecosystem. The results of the inter-
views highlighted the policy importance, the need for an
open, smart, fast, and wired charging network.

Zarazua de Rubens et al. (2020), in an effort to
better understand the challenges around the EV socio-
technical system, investigated infrastructure and busi-
ness models around EV technology in multiple Nordic
countries (Sweden, Denmark, Norway, Iceland, and

Finland). Qualitative data was collected from semi-
structured interviews with 257 participants from
different stakeholder groups, such as national and local
government, research, utilities and private sector manu-
facturing, service and information technology compa-
nies. The responses were analyzed to study patterns and
common ground on barriers to EV adoption and use.
The results of the interviews are presented in the study
through four main sections: fossil fuel favoritism, mad
about maintenance, supply chain, and charging con-
cerns. These four sections delve into the issues around
unfavorable manufacturing processes, marketing, sales
and after-sales strategies, maintenance of EVs, supply
and manufacturing issues, and charging infrastructure
respectively. The paper aims to provide evidence of
unfavorable EV business models and study both
examples and impacts of this poor infrastructure across
different industries and different countries. Finally, the
paper discusses policy recommendations and the need
for improved infrastructure to meet decarbonization
goals.

Earl and Fell (2019) attempted to understand the role
of EV manufacturers in the transportation electrifica-
tion process by interviewing 11 representatives of the
industry. Interviewees saw high potential for innovative
grid management approaches with higher adoption
rates of EVs but maturity and time for the market is
necessary. Additionally, the importance of interrela-
tionships and coordination with other main stake-
holders of the EV ecosystem is needed and public sector
should facilitate those connections.

Table 2.3 presents a list of research studies that focus
on interviews of major stakeholders of the EV eco-
system. As can be seen, there is limited literature on the
topic and existing studies are based on areas outside the
U.S. Most of the studies mainly investigate the barriers
to EV adoption without focusing on the structural
challenges and the interrelationships between different
stakeholder groups. Finally, certain topics regarding
electrification such as the impact of EV adoption on
highway revenue, the impact on the grid, and renewable
energy integration remain unexplored through the
interviews.

2.7 Impact of EVs on Highway Revenue

There is a wide variety of potential governmental and
private revenue sources for highway finance, including
user fees that are the primary source of highway
infrastructure financing at the state and federal levels
(Khan & Becker, 2019). In the U.S., revenue generation
by the states has traditionally been based on user fee
revenue sources for transportation funding such as
vehicle registration fees, tolls and state and federal
gasoline and diesel taxes, also known as motor fuel
taxes, which constitute the largest percentage of revenue,
ranging from 29% to 60% of each state’s revenue (Varn
et al., 2020).

The major impact of road-user charges on the road
infrastructure funding has been highlighted in numerous
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TABLE 2.3

List of research studies based on interviews of EV ecosystem stakeholders

Authors Study Area Number of Participants Data Collection/Methodology Objective
Santos & Davies Germany, Austria, 143 Qualitative approach and content Examine the impact of a
(2020) Spain, Netherlands, analysis of the text with word range of incentives for
UK cloud software (Nvivo 10) the uptake of EVs
Wolbertus et al. Netherlands 39 Q-methodology implementation Reveal stakeholders’
(2020) with representative stakeholders perspective on the future
from the EV ecosystem of EV charging
Zarazua De Rubens Denmark, Finland, 227 Semi-structured expert interviews Investigate the challenges of

et al. (2020) Iceland, Norway,

and Sweden

Earl & Fell (2019) UK 11

with transportation and
electricity experts

EVs focusing on their
current and future
business implications
Determine the perceptions
on the market potential
for demand-side
flexibility of electricity
system by using EVs

Semi-structured expert interviews
with EV manufacturers active
in the UK

earlier studies. For example, Varma and Sinha (1990)
pointed out the importance of highway user charges,
particularly in the form of fuel taxes for highway
transportation infrastructure and the authors explored
different practices of user charges in the U.S. The
authors also described state-by-state differences in
revenue generation, proposed a potential user charge
structure incorporating emerging developments and
discussed the impact of emerging alternative fuel
vehicles on taxation and revenue. Based on that study,
the elements included in future user taxes are titling and
registration fees, tolls, weight-distance taxes and pollu-
tion charges. Berg (1990) discussed a number of
considerations related to highway financing, including
various taxation and revenue policies. The author
emphasized the issue of cost allocation for all the
highway use tax schemes and examined the factors that
influence revenue sources. Among these factors, the
promotion of alternative fuels was extensively discussed
as a challenge that could affect the revenue productivity
of transportation taxes. A variety of reports have
pointed out concerns related to the decreasing sources
of transportation funding (e.g., American Planning
Association, 2010; ASCE, 2017; Coussan & Hicks,
2009). Some studies have called for gasoline tax
increases and other measures to meet the transport
infrastructure needs (e.g., AASHTO, 2007; American
Planning Association, 2010; National Surface Trans-
portation Infrastructure Financing Commission, 2009).
Additionally, there are studies that underscored the
disadvantages of the gasoline use tax, particularly in
terms of its feasibility in funding opportunities, given
the adoption of highly fuel efficient vehicles (e.g.,
Krishen et al., 2010; Watts et al., 2012). Pricing schemes
for fees such as congestion charging fees (e.g., Hensher
& Puckett, 2007) and access toll roads (Swan & Belzer,
2010) have also been examined and proposed.

As can be realized, the value of certain revenue
sources for transportation funding is affected by a
combination of factors such as the rising fuel efficiency

of vehicles, inflation and a shifting federal-state cost
share on infrastructure investments (Varn et al., 2020).
More specifically, the transportation sector is moving
towards electrification and states support increased EV
use. Achieving higher EV market shares is fundamental
to the decarbonization of transportation and captures
the advantages of oil dependency, reduced local pollu-
tion and noise emissions. However, large scale use of
EVs poses challenges to the taxation system and thus,
to the transportation funding scheme, as has been
acknowledged by past and recent research works (e.g.,
Brown et al., 2020; Ford, 1995; Valenta, 2013; Varn
et al., 2020).

Several studies have evaluated revenue impacts of
EVs or alternative fuel vehicles. These studies have
focused mainly on light duty alternative fuel vehicles,
and lessons can be learned by reviewing the assump-
tions, methods and fee or policy structures that have
been used and found. Short and Crownover (2021)
explored options for charging EV users for their use of
public roadways in the U.S. The authors were based on
data for electric automobile, including EV sales pro-
jections, fleet size and assumptions for conventional
vehicles’ efficiency. The cumulative impact of electric
cars on the Highway Trust Fund revenue from 2020 to
2029 was estimated (around $4.3 billion cumulative
revenue loss) and approaches to taxing EV users for
road use were discussed. These approaches included
state-level registration fees, vehicle-miles traveled fees
and electric fuel taxes. Focusing on the electric fuel tax,
the authors estimated that a tax of $0.021/kWh is an
equivalent charge to what is paid through the existing
federal fuel tax.

Xu et al. (2020) developed a method to estimate
proper annual registration fees for passenger electric
and plug-in hybrid EVs in Alabama. Based on data on
vehicle annual mileage traveled, average fleet fuel eco-
nomy, and gasoline excise tax per gallon, the authors
found that the change in fuel efficiency of gasoline
vehicles could have a greater impact on the gasoline
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revenue loss than the advent of electric and hybrid EVs.
Additionally, an additional $181 registration fee for
EVs ($200 in total) and $90 for plug-in hybrid EVs
($100 in total) will be sufficient to cover the gasoline tax
revenue loss per fiscal year. These fees will lead to an
additional revenue generation of $333,040 and $176,040
in 2019 for 1,840 EVs and 1,956 plug-in hybrid EVs,
respectively. This way, in 2023, the total amount of
additional registration fees will generate up to $1.3
million for highway maintenance.

A report by Plug In America (2020) includes a
qualitative discussion about the potential of EV
registration fees, mileage-based fees and fees per unit
of electricity to fund road construction and repair.
According to this report, EV registration fees are not an
appropriate solution since they can slow adoption and
the pace of EV cost reductions. Road fees on electricity
can pose challenges associated with home charging
because it is difficult to quantify the electricity con-
sumption due to the EV and thus, dedicated meters or
smart chargers would be needed. The mileage-based fee
has a greater potential that can also be sustainable even
with the greater use of ridesharing or carsharing
systems. This funding mechanism can include conges-
tion pricing to address potential concerns for rural,
urban, and low-income drivers.

Ricciuti (2020) evaluated the impact of light duty EV
sales on lost gasoline tax revenue for 50 states in the
U.S. over a 10-year period (2019-2028) and provided
recommendations for gasoline tax revenue recovery.
The authors used the percentage of automobile regis-
trations per state relative to the projected EV sales for
the entire country to estimate EV sales by state. They
inserted the projected EV sales by state in conjunction
with data on current tax rates by state, annual mileage,
and mileage consumption into the lost gasoline tax
revenue function. The revenue loss per year by state
depended on the tax rate that would have been applied
to the unpurchased gallons of gas. The analysis results
indicated that in all 50 states, the lost gasoline tax
revenue per year by state could be overcome by impo-
sing a yearly EV surcharge that is approximately 550
times the current sales tax per gallon. These yearly sur-
charges vary from $80 (Alaska) to $320 (Pennsylvania).

Harto and Baker-Branstetter (2019) compared exist-
ing and proposed annual EV fees with gasoline taxes,
and they estimated the effectiveness of annual EV fees
to increase highway funding revenues in the U.S. for
2 years: 2020 and 2025. To compare existing and pro-
posed EV fees, the authors calculated a maximum
justifiable fee as the highest level of an EV fee that
could be established in a state and provide the same
revenue as the average conventional/gasoline vehicle.
The study results showed that EV users will need to pay
double, triple or more compared to the amount they
would have to pay for gasoline taxes for a new gasoline
vehicle. Additionally, the authors found that the propo-
sed EV fees will raise very little revenue to support
highway construction and maintenance (0.04% of cur-
rent state highway funding).

Jia et al. (2019) evaluated the fuel tax revenue impact
of EV adoption in Virginia. Focusing on light duty
battery and plug-in hybrid EVs, the study used vehicle
registration data and applied a county-level EV own-
ership model (bivariate linear mixed count model) to
predict EV counts in each county of the state from 2016
to 2025. To account for uncertainty of fuel economy
improvements, they created scenarios combining dif-
ferent levels of vehicle average fuel economy and
adoption levels. For each of these scenarios, the fuel
tax revenue impacts were calculated for ICEs, battery,
and hybrid EVs. The authors also examined the spatial
distribution of fuel tax revenue. The results showed that
the statewide fuel tax revenue will decrease in 2025 by
5%—-19%, relative to 2016 receipts. Furthermore, the
spatial distribution of revenue showed that by 2025,
vehicles in rural areas are likely to pay 28% more in fuel
taxes compared to those in urban areas.

Towa DOT (2018) sponsored a study that examined
existing and potential funding mechanisms in order to
develop recommendations to lower administrative
costs, promote equity, yield no net change in road use
tax fund revenue and to promote a constitutional
provision that ensured the spending of some collected
revenue on road and bridge maintenance and improve-
ment only. The Iowa report considered light and
medium duty vehicles. The study was based on
scenarios of low, medium, and high forecasts of light
duty EVs for 2018-2040 derived from reports such as
the Energy Information Administration, Bloomberg New
Energy Finance, and Energy Innovation: Policy &
Technology. Assumptions were also made for values
for miles driven per year, average fuel economy and fuel
tax rate. Medium duty EV forecasts were based in part
on forecasted passenger EV growth but were also
adjusted to account for later availability of medium
duty EVs and faster turnover of such vehicle fleets. The
results showed that lost road use tax fund collections
would be approximately $317K in the base year (2018).
This impact is forecasted to substantially increase from
$40 to $240 million by 2040 depending on the growth of
the EV market. Based on these results, the lowa DOT
proposes and qualitatively describes three mitigation
strategies that include adding a per kilowatt hour excise
tax for charging at non-residential charging locations,
adding a supplemental registration fee for passenger
EVs and adding a hydrogen fuel excise tax.

Chamberlin et al. (2016) estimated statewide fuel tax
revenue in Utah by 2040, assuming three EV market
penetration rates (1%, 2%, and 32% of new vehicle
sales). The vehicles considered were battery, plug-in
hybrid and hybrid light duty EVs. The authors were
based on the Energy and Emissions Policy Analysis
Tool from the Federal Highway Administration in
order to estimate the vehicle miles travelled, the fuel
consumption and fuel tax revenues. This study con-
cludes that the fuel tax revenue will decline by 29% in
2040 compared to 2010.

Jenn et al. (2015) explored how different vehicles
could change the annual fee collected on a marginal
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basis and how alternative fuel vehicle adoption would
affect the revenues at a state-by-state and national level.
Their study focuses on light duty battery and plug-in
hybrid EVs and is based on specific popular EV models
(Toyota Camry, Honda Civic, Ford F-150, Nissan
Leaf, Toyota Prius, Chevrolet Volt). The lifetime fees of
these EV models are calculated, including use (fuel tax)
and fixed (title, registration, inspection) fees. The authors
use projected vehicle sales from the 2013 Annual Energy
Outlook report of the Energy Information Administra-
tion (EIA, 2013) in order to calculate aggregate funding
deficits. The study also attempts to estimate alternative
policy options for EVs based on charging an annual
registration fee, a use fee tax or a charging tax on
electricity. The results suggest that the total annual
revenue generation decreases by about $200 to $900
million by 2025, depending on the level of adoption of
EVs. To overcome the decreases in revenue generation,
the authors propose a flat annual registration fee at
0.6% of the vehicle’s manufacturer suggested retail
price or a 22¢/mile fee or a 4.5¢/kWh tax.

Schleith (2015) investigated the impact of light duty
battery and plug-in hybrid EVs on federal and state
highway revenue sources at a national scale. The
authors assumed three scenarios of EV sales growth
rates from 2016 (5%, 10%, and 15%) and used data on
vehicle sales, annual average mileage and gasoline
mileage to find the average gasoline tax paid per
vehicle. Calculations for EV sales growth rates of 10%
show that the revenue loss would account for drop in
the gasoline tax of 1% in 6 years, 5% in 19 years, and
10% in 25 years. Although this report focuses on fuel
tax revenue, it also discusses mechanisms such as repla-
cing or adding to the fuel tax a vehicle mile traveled tax
accounting for the vehicle type and weight as well as the
location and time of its use or requiring additional
highway usage tolls.

Vasudevan and Nambisan (2014) examined the
impacts of Corporate Average Fuel Economy regula-
tions as well as light duty hybrid and battery EVs and
light truck fleet adoption on transportation funding at
the U.S. national level. The New Sales Survivability
model is applied and new vehicle sales data and vehicle
survivability data from 1980 to 2005 were used to
estimate the vehicle fleet, vehicle miles traveled by fleet
mix and fuel-tax-based revenue projections for 2010—
2025. Given that battery and hybrid EV sales increase
by 20% annually from the base year (2009), the results
project that the federal fuel tax revenues will decrease
by 37% by 2025.

The Oregon Department of Transportation con-
ducted studies to explore various funding ideas and
examined potential implementation issues, including
the case of “all-EVs.” In Whitty (2007), the Oregon
Mileage Fee Concept was examined. This program
charges all automobiles approximately 1.8¢ per mile but
approximately 40% of the revenue is paid to third party
technology companies that facilitate the program and
not to the state. The study did not calculate the impact
of EVs on state revenue but mentioned options for

all-EVs to pay a mileage-fee. The most viable option
involves wirelessly uploading mileage-based fee data
through electric utility meters for billing via the
monthly electric bill. This system would have cost
savings from integrating it onto an existing billing
system and would be convenient for the user who can
pay the electric bill as before with the addition of the
mileage fees. Other less desirable or viable options
included (1) cellular uploads of mileage fee data to
centralized data and billing centers which is expensive
or (2) uploading mileage data and collect the fees
during vehicle registration which may be infeasible for
broad scale implementation to all vehicles due to the
infrequency of registrations and/or the avoidance of re-
registrations. In Jones and Bock (2017), the results of
the Oregon Road Usage Charge Program are pre-
sented. Among other options for conventional vehicles,
this program also examined funding ideas for EVs,
including flat fees, taxes on electricity for vehicle use,
and fees based on distance traveled. The most impor-
tant learning of their test program is that charging
drivers by the mile is possible and can work. Certain
implementation issues can occur though, including the
difficulty of communication between mileage reporting
devices and EVs.

These previous studies examined the revenue impacts
of EV adoption either qualitatively or under various
scenarios for light duty vehicles mostly. However, the
reality is that (1) quantitative research is also essential
to easily understand and describe the magnitude of a
situation to decision-makers and (2) advancements in
EV technology are not limited to light duty vehicles
only. Several vehicle manufacturers have indicated
plans to introduce medium and heavy duty commercial
EVs to the market soon. These vehicles, like light duty
EVs, are expected to have significant negative impacts
on highway revenue generation due to the reduced use
of diesel or gasoline fuel. Additionally, the majority of
the past studies had focused mainly on policies related
to fuel tax while transportation funding is also based on
more sources besides this source, and most studies did
not address all alternative mechanisms such as user fees
for electricity use and/or vehicle miles travelled-based
fees with the exception of Jenn et al. (2015) and Short
and Crownover (2021) that provided quantitative infor-
mation. Thus, the review of the literature shows the
need to present well-documented and more realistic
models to develop highway revenue estimates in sup-
port of policy making.

2.8 Summary

Different supply and demand aspects of EVs were
discussed in this chapter to provide the groundwork for
identifying any gaps in infrastructure and needs from
the potential growth of EV demand. By examining the
existing literature, knowledge was gained on the diffe-
rent types and typical ranges of EVs (hybrid, plug-in
hybrid, and battery EVs) as well as on the different
charging methods. In particular, there are five main
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charging methods: stationary plug-in charging, station-
ary wireless charging, dynamic conductive charging,
dynamic wireless charging, and battery swapping,
which all differ in terms of how the electricity is
transferred, charging times, maturity level, applicable
vehicles and installation costs. When choosing a charg-
ing method to deploy, it is also imperative to consider
EV driver’s value of travel time (VOTT) to charge a
vehicle. High levels of variance to VOTT exist, span-
ning from $5/hr to $50/hr for private vehicle drivers
while VOTT is estimated as the value lost from not
driving for commercial drivers. Furthermore, this
chapter presented studies on EV demand forecasting
as well as available forecasting tools that can be used
for an accurate prediction of EV demand. There is a
wide range in the projections of EV demand, depending
on the location, policies and availability of charging
infrastructure and most projections refer to light duty
vehicles. Additionally, most available forecasting tools
consider global, regional, or national scales. Studies
that explored the impact of inadequate EV charging
stations were also reviewed and most of them only used
scenarios in short-distance city level trips, one-way
trips, and existing infrastructure within the city limit.
Previous work on stakeholders’ perspectives regarding
electrification was discussed and as shown, it mainly
includes international studies. Furthermore, existing
research mainly focuses on examining the barriers to
EV adoption; certain topics, such as the interrelation-
ships among different stakeholder groups, the impact of
EV adoption on highway revenue, and the impact on
the grid are not adequately explored. Moreover, the
large-scale adoption of EVs is expected to affect high-
way revenue and as shown from a review of existing
studies, this issue has been mostly examined either
qualitatively or under various adoption scenarios for
light duty vehicles.

3. VEHICLE ELECTRIFICATION IN INDIANA

This chapter examines current trends on electrifica-
tion and current electrification projects within the
Indiana (Section 3.1) as well as the current state of
Indiana’s electric grid (Section 3.2). A summary of the
chapter is provided in Section 3.3.

3.1 Current Trends and Statistics for EVs in Indiana

In Indiana, the total light duty EV market reached
around 3% (including battery electric, hybrid electric
and plug-in hybrid EVs) in 2019 (Alliance for Auto-
motive Innovation, 2022). Figure 3.1 shows the battery
and hybrid electric light duty market share in Indiana
from 2013-2019. In particular, the total EV share in
2019 was 0.68% for battery electric and 2.39% for
hybrid EVs. This share in 2019 is higher that the share
of 2018 by 0.09% but still lower than that in 2013 by
0.81%. Additionally, the majority of EVs are hybrid
followed by battery EVs, a trend that is similar for all
the years. The vehicle registration counts of all EVs in

Indiana was 3,030 vehicles in 2018 (U.S. Department
of Energy, 2018). The electric commercial truck market
is difficult to track. In general, the market share of
commercial electric trucks has not kept pace with
passenger vehicle market share and therefore, adoption
related data in this industry is important. For long-haul
trucking in particular, the use of greener technologies is
still well at a nascent stage in the U.S. (Loudin, 2020).

There is limited information regarding future trends
for EV market penetration in Indiana. A consulting
firm conducted a study for Duke Energy and evaluated
the benefits of increased penetration of plug-in EVs in
the state of Indiana (M.J. Bradley & Associates, 2018).
The analysis projects economic benefits of EVs for two
different EV penetration levels between 2030 and 2050.
These scenarios include a “business as usual” scenario
of modest EV penetration that is based on the Energy
Information Administration’s current estimates of
future EV sales (EIA), and a more aggressive scenario
based on the EV penetration that would be required to
get the state onto a trajectory to reduce light duty GHG
emissions by 70%-80% from current levels by 2050
(80 x 50). According to these scenarios, EVs can reach
6% (for the moderate scenario) to 95% (for the aggres-
sive scenario) of the registered vehicles in Indiana by
2050. If Indiana EV adoption follows the moderate EV
penetration scenario, the net present value of cumula-
tive net benefits from greater EV use in the state will
exceed $3.7 billion state-wide by 2050. If Indiana EV
adoption follows the aggressive penetration scenario,
the net present value of cumulative net benefits from
greater PEV use in Indiana could exceed $32.2 billion
statewide by 2050. As noted in the study, the levels of
PEV penetration in the aggressive scenario are unlikely
to be achieved without aggressive policy action at the
state and local level, to incentivize individuals to
purchase PEVs, and to support the necessary roll-out
of PEV charging infrastructure.

Indiana’s EVs are served by the state’s 325 public
charging stations and 892 charging outlets available
(U.S. Department of Energy, n.d.b). These charging
stations include DC fast (52 stations) and Level 2 (273
stations). These numbers refer to charging stations with
public access that can be federal or state government
owned, jointly owned, local/municipal government
owned, privately owned, or utility owned. The charging
stations are either non-networked or networked with
one of the following EV networks: ChargePoint, EV
Connect, Blink, Greenlots, Tesla, Electrify America,
SemaCharge, EVgo (U.S. Department of Energy,
n.d.b). According to EVAdoption (2021), comparing
the charging infrastructure of Indiana with the other mid-
west states, only Illinois performs better with 22 EVs to
charger ports, while Indiana’s performance is similar to
Ohio’s, Wisconsin’s, and Minnesota’s performance with
values between 17 and 18 EVs to charger ports.

Several transportation infrastructure projects in
Indiana involve the cooperation of national utilities
and state agencies to accelerate the adoption of
EVs and explore green transportation technologies.
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The Indiana Energy Association (IEA) has requested
the maximum amount allowed under the Volkswagen
settlement federal trust document to be allocated to
invest in the EV infrastructure in the state (15% of the
total $40.9 million in funds to Indiana, or $6.15 million
(Indiana Energy Association, n.d.). IEA also proposed
that Indiana invest 40% of the trust fund ($14.7 million)
in projects that replace diesel with EVs and in charging
infrastructure necessary to operate EVs. Investments in
medium and heavy duty vehicles are also proposed to
promote a cleaner environment, improve health and the
state’s economy by promoting the EV industry (Indiana
Energy Association, n.d.). Additionally, Indiana has
signed the Regional EV Midwest Coalition Memo-
randum of Understanding ( Regional FElectric Vehicle
Midwest Coalition, 2021) which aims to accelerate
medium and heavy duty fleet electrification (including
cooperating with energy providers to ensure sufficient
electricity supply and grid resilience), to -elevate
economic growth and industry leadership and to
advance equity and clean environment.

Different local EV projects have been initiated.
IndyGo has currently 31 electric buses that are running
on its express Red Line and are manufactured by the
BYD company (Associated Press, 2020). There was a
plan for Indianapolis to switch to an entirely electric
fleet of public buses by 2035 but this is in question due
to problems with range. However, there are also dis-
cussions for the Purple Line and the potential of wireless
charging capabilities. The Indianapolis Airport operates
nine electric buses serving passengers between the
ground transportation center and long-term parking.
Buses can handle about 120 miles, which give an eight to
12-hour shift (Indianapolis International Airport, 2017).
Their charging time is about 6 hours. This project is
supported by federal grants ($3.6 million) under the
Zero Emissions Airport Vehicle (ZEV) program. Bargers-
ville police department is among the first to implement
EVs into its fleet. The fleet includes a 2019 Tesla Model
3 car (May & Clark, 2021). It has been reported that
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0.50%
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Market share of EV light duty vehicles (2013-2019) (Alliance for Automotive Innovation, 2022).
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the car will save the department more than $20K over
the next 6 years. In early 2019, the city of Carmel’s
police department began switching its fleet of patrol
cars from regular gasoline powered vehicles to ford
hybrid interceptors (Carmel Indiana, 2019). This will
provide annual savings of nearly $400K dollars once
the entire 130-car fleet is replaced. There is also a plan
for 41 hybrid police patrol vehicles to be added.

3.2 Energy Supply and Demand within Indiana

3.2.1 Past Energy Consumption

In 2018 (the last year of available data), the trans-
portation sector consumed over 500 trillion BTU (146
million kWh) of energy (EIA, 2019a). This accounted
for roughly 20.5% of all consumption in the state,
behind only industrial uses. In fact, transportation has
been the second highest energy-consumer in Indiana
since the early 1980s (EIA, 2019a).

When considering the energy supply side, renewable
sources have accounted for 6%—7% of all energy con-
sumed in the state between 2015 and 2018. This
primarily comes from a mix of wind, wood and waste,
and fuel ethanol sources (EIA, 2019a). When only con-
sidering the energy that is generated within the state,
renewables have accounted for about 6% of all energy
generated over the same time span. Wind energy has
accounted for significant majority of this share (EIA,
2019a). In 2018, wind energy comprised 85% of all
renewable energy generated within the state. Addi-
tionally, it is important to note that renewable gene-
ration actually fell slightly from 2017 to 2018.

There do not appear to be statistics to display regard-
ing the energy consumption of EVs in Indiana or what
percent of EV energy comes from renewable sources.
However, given that there were only 3,030 registered EVs
in the state (U.S. Department of Energy, 2018) out of over
6 million total vehicle registrations (FHWA, 2021), it is
fair to assume that these values are currently negligible.
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3.2.2 Projected Future Energy Consumption

Supply and demand projections from utility compa-
nies as well as the State Utility Forecasting Group
(SUFG) were reviewed for the next two decades. While
an energy surplus currently exists in Indiana, the SUFG
predicts that energy demand will outpace existing
resources by 2024. This forecast predicts electricity
usage to grow at a rate of 0.67% per year, and peak
demand to grow at a base scenario of 0.60% (low
scenario: 0.35%, high scenario: 0.92%) per year. With-
out the addition of new energy resources, electricity
demand by 2037 is predicted to outpace supply by
about 10,000 MW (Phillips et al., 2019).

This report divides this electricity sales growth into
three wuse segments—residential, commercial, and
industrial use. Residential usage is expected to grow
0.45% per year, industrial at 1.26% per year, and
commercial use is expected to decrease by -0.1% per
year. Additionally, the 2019 SUFG forecast provides
projected inflation-adjusted electric prices through
2037. It predicts prices to rise 35% through 2026 before
decreasing 8% from 2026-2037 (Phillips et al., 2019).

It is important to note that the SUFG report (nor
any utility report) does not mention transportation-
related electricity use in its projections. This reflects the
current difficulty in performing real-world projections
for the impact of EVs on electric grids. This difficulty is
due to the need to accurately project EV diffusion rates
in the area of interest and to predict the potential use of
techniques to mitigate strain on the electric grid. These
include methods such as coordinated charging, energy
storage at charging stations, and bidirectional charging
(as mentioned in the above section on charging
techniques). While there is a significant level of research
into such techniques, it is still quite uncertain which of
these techniques may be implemented in the future, and
how they would be designed. Due to these limitations, it
may be expected that real-world energy grid projections
cannot accurately project the effects of EV diffusion.

As the 2019 report projects demand to exceed gene-
ration resources in the coming decade, the SUFG
released a follow-up report in 2020 performing a scenario
analysis of potential generation additions to meet this
increased demand (SUFG, 2020). The reference scenario
for this report is based on the base scenario of the SUFG
2019 report to predict what types of generation will be
added and what the overall generation mix will be by
2037. Other scenarios include preventions on coal plant
retirements until 2025 and 2030, low renewable energy
cost, high natural gas prices, and the inclusion of an
increasing carbon price. The majority of scenarios indi-
cate that natural gas (both combined cycle and combus-
tion turbine) will be the primary additions, followed by
wind generation. Solar generation is predicted to be
minimal compared to gas and wind. The two exceptions
to this trend are the high natural gas price scenario,
which indicates primarily wind addition, and the low

renewable cost scenario, which suggests primarily wind
and solar additions (SUFG, 2020).

Ultimately, the analysis projects that by 2035, renew-
able generation will account for 13% of generation in
the reference scenario, and up to 29% of generation
in the low renewable cost scenario. Coal generation is
projected to account for 23%-29% of generation in
scenarios without a carbon cost, but only 6%-9% when
there is a carbon cost. The percent of generation that is
from natural gas is project to increase but then decrease
over this period (SUFG, 2020).

This report also predicts energy prices for the various
scenarios. The reference scenario is the same as the base
price predictions as from (Phillips et al., 2019). Nearly
all scenarios track the reference projections, though the
high gas price scenario results in significantly higher
price forecasts. The low renewable cost scenario yields
the lowest projected energy prices after 2026 (SUFG,
2020).

The most recent Duke Energy IRP (Duke Energy
Indiana, 2020) provides similar trends for its own
projected energy generation mix within Indiana.
However, it should be noted that the public version
of this IRP heavily redacts the figures and analysis that
was relied upon to create their projections. One
important difference to note between the Duke and
SUFG projections is that most Duke scenarios project
a much higher percentage of solar use and lower rate of
wind use than the SUFG projections do.

Additionally, the Duke reference projection includes
a more aggressive carbon price than the SUFG carbon-
price scenarios. This reference with carbon price
projects 35% coal generation by 2035, which is higher
than the SUFG projections without a carbon price. The
Duke reference scenario without a carbon price predicts
56% coal generation in 2035 (Duke Energy Indiana,
2020). In general, the Duke scenarios project a more
gradual phasing-out of coal than the SUFG scenarios.

However, the general trends of the Duke Energy
scenarios are similar to the SUFG scenarios. Coal is
expected to play a diminished role in generation while
gas is expected to make up a greater part of the mix.
Additionally, it is only in the most aggressive scenarios
that renewables make up the majority of the generation
mix. Again, it should be emphasized that the (SUFG,
2020) and (Duke Energy Indiana, 2020) reports, as well,
do not account for increased EV penetration in their
projections. Thus, it should be recognized that with
increased EV diffusion, energy demands will most likely
be greater than projected here, and this may affect the
generation mix in ways not anticipated by these reports.

3.3 Summary

Current trend and statistics for EVs in Indiana were
reported and it can be concluded that (1) there is limited
information regarding future trends for EV market
penetration, (2) there are different projects in the state
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that have started to explore green transportation techno-
logies as well as programs with the goal to accelerate EV
adoption, and (3) there is difficulty in performing real-
world projections for the impact of EVs on electric grids.

4. SPATIAL ANALYSIS AND GUIDANCE FOR
STRATEGIC DEPLOYMENT OF EV CHARGING
INFRASTRUCTURE

This chapter describes the agent-based simulation for
long-distance EV trips and the spatial analysis for high
energy consumption areas for EV in Indiana. The scope
of the simulation and analysis is the long-distance
EV trips within Indiana. The agent-based simulations
demonstrate the EV long distance trips, and energy
demand to identify locations where EV driving can be
impaired due to the EV driving range. In all, this
chapter presents the work the team developed to con-
duct the spatial analysis upon the strategy of deploying
potential EV charging stations. It mainly includes the
following two parts: (1) the simulation model used to
identify EV demand and frequency of charging (Section
4.1) and (2) the GIS-integrated spatial analysis for EV
infrastructure deficit areas and potential EV charging
stations deployment (Section 4.2).

4.1 Simulation Model of Electric Vehicle Trips in Indiana

A simulation model has been developed to derive the
EV energy demand in daily trips. While most studies
have focused on modeling short-distance city level trips
(Chen et al., 2022; Santa-Eulalia et al., 2011; Zhang
et al., 2018), the research team uses an agent-based
simulation model to simulate daily long-distance trips
and determine the locations of the failed trips where the
EVs run out of energy using the existing state and
interstate highway corridors of Indiana. Each EV trip is
designed to be an independent agent in the simulation

model with unique behavior patterns and circum-
stances. These studies show that the agent-based
simulation model is suitable for handling the complex-
ity of numerous factors, variables, inter-dependency in
the actual driving conditions and existing infrastructure
systems. In this section, the study gives a comprehensive
demonstration of the simulation model’s workflow in
Figure 4.1.

AnyLogic is a widely used tool for modeling and
simulation of discrete, system dynamics, multi-agent,
and hybrid systems. Its application areas include
logistics, pedestrian traffic simulation, pedestrian eva-
cuation, urban planning and architectural design, urban
development and GIS information, public policy,
airports. The research team chose AnyLogic to develop
the simulation model since its functions and libraries
are suitable to the scope of this study.

4.1.1 Data

Observing the flowchart in Figure 4.1, the EV travel
demand data is the essential foundation for the simu-
lation. Correspondingly, the Indiana Statewide Travel
Demand Model (ISTDM) is utilized in this study. The
ISTDM is a projection model conducted by the
INDOT to provide specialized planning services for
statewide projects. This model supplies the projected
number of daily trips traveling between different
regions. In the ISTDM, those regions are named as
the traffic analysis zones. An example of the daily trip
table is shown in Figure 4.2.

Since the ISTDM model only provides the trip data
for 2015 and 2045, the team performs a regression
analysis (straight trendline) to get the projected long-
distance Origin-Destination (O-D) trip data at other
years. It is assumed that the increment of trips for each
OD-pair is uniform throughout the time. Three signi-
ficant timelines, 2025, 2030, and 2035, are selected to

EV Travel Demand Data

Model to Identify Potential Failures of Long-Distance EV Trips
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Figure 4.1 Overall flow of EV trip failure identification simulation model.
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2015
Total Volume

|Vehicle Trips Destination
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
Greaterindy| NIRCC | ECIRPD EIRPC SIRPC | SR-46 Corridor | River Hills |  SIDC | Indiana 15 | SW Indiana| WCIEDD | TAPCTC | KIRPC NIRPC | MACOG | NCRPC | Region 3A
1 |Greater Indy 5,415,841 1,729|  24860) 22,179 7,359 31,884 5,085 1,155 41 81 30375 20418 1618 202) 188 23157 789)
2 |NIRcC 1,767| 973,99 7,628 430 19 15| 2 § 7 16 12 7 15 67, 4754 357] 41,849
3 [EcreD 24,870) 7.634| 351,531 9,307 1 10) 12 3 4 9 7 1 10 2 50 2435 4,274
4 |ERPC 22,185| 434 9307 305,121 5,844 61 15 3 3 8| 7, 8 3 16| 20 18 17}
5 [siRec 7,363 2 15| 5846 268,607 3,231 6,052 2 10| 15 9 9 4| 19 2 13 7|
6 |SR-46 Corridor 31,968| 2 13 65 3,259 478,150| 6150 10943 156 30 4338 2 7 26, 2| 18 7]
7 [River Hills 5,087 2] 1 1 6,068 6143) 491,560 2,260| 13,889 849 16 1 6| 2% 28| 15| E
8 |sinc 1,298 20 u 10 99 10,958} 2289 233754 10,950 3491 4,619 16 7 29 23 15 7
Origin 9 |indiana 15 156| 17 9| 10 51 1 13,926]  10916| 220926 11,982 39 13| 5 2 20 14} 6|
10 |SW Indiana 218 27 13 12 £ 39 875 3444)  12037) 612,496 123 18 ol 4 33 19) o
1 |waeop 30,403/ 15 8| 8 38| 4323 16 4558 30 64| 310507 2,262 144 27, 20 1] 5
12 TAPCTC 20,417| 19 13| 8 8 21 12 5] 5 13 2,259 422,582 10,762, 670 29 4,359 10]
13 |KIRPC 1,684 32 17| 7 1 ] 10 5| 5 12 150  10773) 189,859) 20559 6,039 6,806 26
14 |NIRPC 257, 85 21 1 18 2 2 9 9 2 26, 674)  20534| 1350693 41,59 120) 47,
15 IMACOG 251 4,761 45 17 26} 23 32 9) 1 27 19| 27| 6,014 41,125| 1,236,932 5,514 19,755
16 [NCRPC 23,151] 358 2433 15 1 13 14 5| 5 14 18 4,358 6791 112] 5516] 397,850 3,282
17 |Region 3A 812 21855 4,273 17 9 7 10 3 2 9| 6| 11 20 28 19767 3,285) 330274

Figure 4.2 An example of the daily trip data from ISTDM in 2015.

reflect the major milestones of the U.S. electrification
roadmap. Such three generated data are exactly
contributed to simulate several different scenarios.

To keep the simulation consistent with the ISTDM
trip data, the Indiana GIS map area in the simulation
model is segmented into 17 regions, which is shown in
Figure 4.3. Each colored region corresponds to a traffic
analysis zone and consists of some adjacent counties.
Since this study mainly focuses on long-distance trips,
only the trips between different regions within Indiana
are considered. For instance, average 5.4 million daily
trips were made within in 2015, and these trips were
excluded for the simulation model.

In addition, this study regards each trip as a round
trip. The vehicle starts from the origin location, moves
to the destination location, and then gets back to the
origin place. For example, in Figure 4.2, given 1,749
trips from region #1 Greater Indy to region #2 NIRCC
and 1,767 trips for the opposite direction per day, the
smaller 1,749 is assumed as the number of daily round
trips between the two regions. Thus, in the specific
simulation process, 1,749 round trips between region #1
Greater Indy and region #2 NIRCC are traveled. The
average daily long-distance round-trip number in 2025,
2030, and 2035 are shown in Figure 4.4.

4.1.2 Model Development

In this study, a multi-agent simulation model is
developed, which includes the following three main
agents: EV Trip, Trip Dispatcher, and Data Collector.
These different agents are regarded as perceptive
entities having the ability to react according to the
current state of the simulation system. For example, the
trip agent will stop if the energy is running out.
Meanwhile, the message function plays a significant
role in the communication process between different
agents. In addition, the GIS is an essential component
in designing the model. The main functions of the
agents are described as below.

® The EV Trip agent is the core agent of the proposed
model. It attempts to finish the trips dispatched by the
Trip Dispatcher agent.
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Figure 4.3 GIS map showing 17 regions that correspond to
ISTDM.

® According to the trip data, the Trip Dispatcher agent is
responsible for assigning trips for the EV Trip agent.

® The Data Collector agent acts as a receiver to handle and
store all the information of failed trips.

Specifically, the concrete state transition charts of the
three agents involved (Trip Dispatcher, EV Trip, and
Data Collector agents) are shown in Figure 4.5. Note
that these agents take their responsibilities and keep
communicating with other agents. Some transition
arrows are marked with the “mail” icon in the state
charts, which means these paths can only be activated if
receiving messages from other agents. For instance, the
EV Trip agent will move from the idle state to the initial
state when it obtains the trip information from the Trip
Dispatcher agent. Then it starts to set up the trip
parameters and then simulate the trips within the GIS
map. A trigger function called “NoCharge” is utilized
to monitor the status of every running trip, which is
represented as a flash symbol. This function is invoked
when the EV is running out the energy halfway, and the
related information of the failure trip is sent to the Data
Collector agent for the recording purpose.
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T 2025

|Vehicle Round Trips Destination
1 2 3 ) 5 6 7 8 9 10 1n 12 13 1 15 16 17
Greaterindy| NIRCC | EGRPD | EIRPC SIRPC | SR-46 Corridor | River Hills |  SIDC | indiana 15 | SW Indiana| WCIEDD | TAPCTC | KIRPC NIRPC | MACOG | NCIRPC | Region 3A
1 |Greater indy o 2104]  25261) 24,855 9,834 33,203 5,434 1,317 43 81 30143] 20768 1723 25 208] 23273 802)
2 [NIRCC 0 7,232 419 13 16| 2| 5 7 15| 13 19| 16| 73| 5,174] 336) 44444
3 [ECRPD 0 9,736| 14| 10| 1 3 3 7 7| 13 10| 21] 25 2,620 4,920)
4 |ERPC 0 6,708 66| 1 3 3 7| 7 8 3| 13 16| 15 15|
5 |SIRPC 0 4,707 7,788| 25| 10| 13| 9 8 4 17 21 12 [
6 |SR-46 Corridor 0 6439) 13450 367, 34| 5,233 21 7 22| 23 12| 8|
7 |River Hills 0 2,347] 13,352 903 16} 12| 6 26| 27 13| 8
8 |sinc o] 11401 4,005 4,755 4| 4 9 9) 4 3
Origin 9 |indiana 15 of 13130 29) 5 4 9 1 5 3
10 |SW indiana 0 61 1 10| 23| 24| 1 8|
1 |waeop 0| 2,224 167, 25| 1| 17| 5
12 |tapcic o] 11685 1,482 2| 4,497 10
13 |KIRPC o] 23368 6,966 6,625 38
14 |NIRPC o 41404 110 23|
15 |MACOG 0 5738]  21,270)
16 |NCRPC 0 3,238
17 |Region 3A 0
2030
[Vehicle Round Trips Destination
1 2 3 a 5 6 7 8 9 10 1n 12 13 1 15 16 17
Greaterindy| NIRCC | ECRPD | EIRPC SIRPC | SR-46 Corridor | River Hills |  SIDC | Indiana 15 | SW Indiana| WCIEDD | TAPCTC | KIRPC NIRPC | MACOG | NCIRPC | Region 3A
1 |Greater Indy 0 2,282 25456 26191  11,070) 33,863/ 5,628| 1,397 5 81  30027] 20943 1,775 266/ 27) 23334 80g]
2 [MIRcC 0 7,034 413 1| 16} 2| 6 7 14| 13 18| 17 75| 5,382 325) 45741
3 [ECRPD 0 9,950 14| 10| 1] 3 3 7 7 14| 10| 2] 2 2,713 5,244
4 |ERPC 0 7,139 69) 14| 2 3 6 7 6 3 13| 16} 15| 14
5 [siReC 0 5,445, 8,656| 2| 10| 12| 9 8 4| 17| 20 12| 6
6 |SR-6 Corridor 0| 6574] 14,704 473 36 5,688] 2 7 22 23 12| 7
7 |River Hills 0 239%0| 13084 930 17 12| 6 2| 27, 12| 8
8 |sioc o 11643 4,286 4,856, 4 4 8| 8| 4 2
Origin 9 |[indiana 15 o 13704 28| 4 4| 9 1] 5 3
10 |SW Indiana 0 60 10| 9) 2| 23] 10| 7
1 |wcEpp 0 2,206 179) 2| 13 16| 5
12 |tapcic o] 12087 1,888| 28] 4,566) 19)
13 |KIRPC of 2478 6,542 6,542] 37]
14 |NIRPC o] 41543 109 24
15 |MACOG [ 5849)  22,02]
16 |NCRPC 0 3,216}
17 |Region3A o]
2035
[Vehicle Round Trips Destination
i 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
GreaterIndy| NIRCC | ECIRPD | EIRPC SIRPC | SR-46 Corridor | River Hills |  SIDC__| Indiana 15 | SW Indiana| WCIEDD | TAPCTC | KIRPC NIRPC | MACOG | NCIRPC | Region 3A
1 |Greater Indy 0 2459) 25651  27,526] 12,308 34,523 5,822 1,478} 48, 81| 29910 21,119 1,827 286 27 23395 814)
2 [NIRCC 0 6,534 408 19 17 23 5| 7 14| 13 18 7 78| 5,588] 314] 47,03
3 |eareD o 10165 14 10) 1 3 3 6| 6| 14 10) 21 43 2,806| 5,568]
4 |ERPC 0 7,571 71 14| 2 3 5 7 7 3 12| 16} 14| 13
5 |siRec 0 6,183 9,524 2| 10| 1] 9) 8 4 16| 20 12| 6
6 |SR-46 Corridor 0| 6717 15958 579 38| 6,143 22| 8 22| 23] 12| 7
7 [River Hills 0 2434 12816 957 17 12 6 27| 27, 12| E
8 |sinc o 11885 4,567 4,957 4 4| 8 8| 4 2
Origin 9 |[indiana 15 o 1427 28 4 3 9 1 4 3
10 |SW Indiana 0 58 10| 7 2 2] 9 §
11 |wcaEDD 0| 2,188| 190) 2| 18] 16| 5
12 |tapcic o] 12529 2,203 28 4,635 10)
13 |KIRPC o 2620 6,718 6,459) 37]
14 |NIRPC o] 41683 108| 23
15 |MACOG 0| 5960] 22,78
16 |NCRPC 0 3,194
17 |Region3A o]

Figure 4.4 Average, daily, long-distance round-trip number for 2025, 2030, and 2035.

The algorithms for the internal logic flow of the
agents are demonstrated in Tables 4.1, 4.2, and 4.3.
Based on the EV trip data, the Trip Dispatcher agent
first automatically classifies all the trips by the origin
and destination regions. For each subgroup of trips, the
Trip Dispatcher agent requests the EV Trip agent to
finish the trips from the origin region to the destination
region along the transportation network. The specific
starting and ending locations are randomly selected
within the regions to add more randomness to the
model. The trips are processed one by one and travel
through the fastest path. After finishing all the assigned
trips, the EV Trip agent will trigger the Trip Dispatcher
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agent by the message function to conduct the next
round of trip distribution. The Data Collector agent is
always listening to the messages from the EV Trip agent
to see if any trip fails halfway. Overall, the main out-
come of this simulation model is a database composed
of several failure trip info entries.

4.1.3 Model Parameters

Once the model’s architecture is completed, the
team applied 10 parameters to create various scena-
rios. Table 4.4 lists the parameters included in this
model.
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Figure 4.5 Internal state charts of the agents in the model.
TABLE 4.1 TABLE 4.3
Algorithm of trip dispatcher agent Algorithm of data collector agent
1 Classify all the trips based on the origin-destination pair 1 while receiving message from EV Trip agent do
2 for all origin-destination pairs (O;, d;) in the trips do 2 Extract the stop marker information
3 Get number of trips n; corresponding to (O;, d;) {0,, d;, st, ed, distance(st,ed), lat, Ing} from the message
4 Package the trip information (O;, d;, n;) 3 Insert this information as a data entry into the database
5 Send trip information to EV Trip agent and request to 4 if receiving “display” message from Trip Dispatcher agent

handle the trips then

6 if receiving “finish” message from EV Trip then 5 break the while loop
7 Go on to next origin-destination pair 6 end if
8 end if 7 end while
9 end for 8 Transform the recorded database into standalone Excel file
as the outcomes
TABLE 4.4
TABLE 4.2 Input parameters for the simulation model

Algorithm of EV trip agent

Input Parameters

1 while receiving message from Trip Dispatcher agent do Battery Capacity (kWh
2 Extract the trip information (O, d;, n;) from the message attery Lapacity (‘ )
3 Let count = 0 Energy Consumption Rate

. (kWh/100 miles)
4 while count < n; do R

EV Speed (miles/hour)
5 Increment count by 1 Simulation Year (2025. 2030 2035
6 Randomly pick starting and destination locations (st, ed) i d‘tlon ear ( ’ > oF )
s . Adoption Rate (between 0%—100%)

within regions (O;, d;) K . .

7 Compute the initial charging energy level and energy Min Charging Ratio (between 0%-100%)
. Max Charging Ratio (between 0%—-100%)

consumption rate U Defined Fact I (bet 0%-1.0%)
8 Travel the agent from stz to ed through the fastest path ser etmed ractor ctween Wo=1.L7%

along the GIS map User Defined Factor 2 (between 0%—1.0%)

. . User Defined Factor 3 (between 0%—1.0%)

9 if energy is used up then
10 Stop the agent
11 Send both the trip information {O;, d;, st, ed, distance(st,ed)} .

and the GIS coordinates of stop location (lat, Ing) to In Fhese parameters, battery Capa}CItY: energy con-

Data Collector agent sumption rate, and EV speed are the internal settings of
12 endif the vehicle. In general, they will be kept static among
13 end while a set of simulation cases. Refer to InsideEVs (Kane,
14 Send “finish” message to Trip Dispatcher agent 2022), the average battery capacity of the popular latest
15 end while EV models is around 78 kWh and the average EPA

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/12 19



TABLE 4.5

Comparison of battery size and EPA range among EV models (Kane, 2022)

EV Model

Battery Size (kWh)

EPA Range (miles)

Audi e-tron (2021) 95 222
Chevrolet Bolt E.V. (2022) 65 259
Ford Mustang Mach-E (2021) 75.7 230
Hyundai Kona Electric (2021) 64 258
Jaguar I-PACE EV400 (2022) 90 234
Nissan LEAF e+ S (2022) 62 226
Porsche Taycan (2021) 79.2 199
Tesla Model 3 Standard Range Plus (2021) 60 263
Tesla Model S Plaid (2021) 100 390
Volvo C40 Recharge (2022) 82 260
Volkswagen ID.4 Pro (2021) 82 250
Average 77.7 253.7
TABLE 4.6

Comparison of MPGe among EV models (U.S. Department of Energy, n.d.)

EV Model MPGe Energy Consumption Rate (kWh/100 miles)
Audi e-tron (2021) 78 43.2
Chevrolet Bolt E.V. (2022) 118 28.6
Ford Mustang Mach-E (2021) 100 33.7
Hyundai Kona Electric (2021) 120 28.1
Jaguar I-PACE EV400 (2022) 90 37.4
Nissan LEAF e+ S (2022) 108 31.2
Porsche Taycan (2021) 78 43.2
Tesla Model 3 Standard Range Plus (2021) 142 23.7
Tesla Model S Plaid (2021) 100 33.7
Volvo C40 Recharge (2022) 79 42.7
Volkswagen ID.4 Pro (2021) 97 34.7
Average 100.1 34.6

range is about 254 miles, which can be referenced from
Table 4.5. According to the information at U.S. Depart-
ment of Energy (n.d.), the average Miles-per-Gallon-
Equivalent (MPGe) of the popular EV models is around
100. Table 4.6 provides the details. The U.S. Environ-
mental Protection Agency (EPA) states that it takes 33.7
kilowatt-hours (kWh) to generate the same amount of
heat as burning one gallon of gasoline by way of electri-
city (EPA, 2019). Hence, the average energy consumption
rate for EV can be calculated as 34.6 kWh/100 miles. Con-
sidering the average EV speed, the research team deter-
mined to set as 60 miles/hour, which is an appropriate value
for the vehicle average speed on highway and state roads.

Regarding the other parameters, the simulation year
can be chosen from three specific values, 2025, 2030,
and 2035 as stated earlier. As the ISTDM only provides
the trip data for general gasoline vehicles, an adoption
rate (number of vehicles on the road) is needed to get
the trip data for EVs. The adoption rate is based on the
scenario and is directly multiplied with the trip number
between various ISTDM regions to derive the required
EV travel data.

Apart from exploring the impact of simulation year
and EV adoption rate on the simulation results, this
study also attempts to find how various driving and

charging patterns affect the status of trips. Some drivers
may experience range anxiety and try to keep the
energy always almost full before their trip, while other
drivers are not concerned about this. This causes the
initial energy level for each trip to be different. To
consider the diverse charging patterns, the simulation
model defines two user-defined parameters: minimum
charging ratio and max charging ratio. These two
values are limited within a range [0, 100%)] and the mini-
mum charging ratio must be lower than the max one.
The final energy level is computed via Equation 4.1.

Energy Level = Normal(Min Ratio, Max Ratio)

-Battery Capacity  (Equation 4.1)

where Normal () refers to the truncated normal
distribution function.

Similarly, the three user defined factors are employed
to capture more complexity of the real driving situ-
ation. These factors can reflect any conditions, such as
traffic delay, construction delay, battery degradation,
use of in-vehicle facilities, etc. The user defined factors
can be defined in the future to accommodate the
specific conditions decreasing the optimum EV driving
conditions. In the simulation model, the usage of the
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factors is expressed in Equation 4.2, where the Optimal
Energy Consumption is the energy consumption rate
documented by the manufactory.

Optimal Energy Consumption
Factor 1-Factor 2-Factor 3

(Equation 4.2)

Energy Consumption =

Thus, users can utilize these three factors to generate
diverse EV energy consumption rates for different cases.
Figure 4.6 shows the layout of developed simulation
model.

4.1.4 Simulation Scenarios

The team first established nine comparative simula-
tion scenarios to mainly reflect the impacts of different
travel demands and EV adoption levels over time.
Specifically, the scenarios employ daily long-distance
O-D trip data in the year 2025, 2030, and 2035. There
are three different EV adoption rates in each year of the
scenario. In these scenarios, the EV adoption percen-
tages increase over time. The team defined three

different increment speeds. Figure 4.7 shows the growth
curve of the adoption rate over time. For the minimum
and maximum initial charging ratios, the default setup
interval is between 50% and 80%. Also, the random
distribution function was applied to assign the initial
energy level. The three user defined factors were all set
as default 100% for this study.

Note the user defined factors are 100% in the above
nine simulation scenarios, which may not reflect the
actual EV driving conditions on the road. The team
determined to perform an additional simulation (ID
#10) applying the non-optimal factors. In specific, the
year 2035 with a 50% EV adoption rate is chosen. The
factors are determined as 0.8 (weather condition), 0.85
(traffic delay), and 0.95 (construction delay). The
parameter configurations for these ten scenarios are
listed in Table 4.7.

4.1.5 Simulation Data Analysis and Results

Based on the configured parameters, the model tracks
the status of every trip agent during the simulation and
records the essential information of every on-way failed

Trip-based EV Charging Demand Simulation Tool

min

Initial State of the Charging
Battery Capacity (kWh) Minimal Initial Charge Ratio Maximum Initial Charge Ratio

max min max

value I value

EV Configurations

Model Factors

Average Consumption Rate (kW/100 mi) User Defined Factor 1:

User Defined Factor 2:
Average EV Speed (mph)

User Defined Factor 3:

Adoption Rate (%)
Simulation Year: 2025

Run Model

Description of the Model:

- This model simulates the EV trips in Indiana State. Once user determines the parameters and runs
the simulation, the model would tell how many trips successfully finish and how many trips fail on the
way. The failed trips are recorded and exported to an Excel file, then shown on the GIS map.

Parameters:

Battery Capacity: Whole capacity of the EV battery.

Minimal/Maximum Initial Charge Ratio: Limit the range of random initial charging level.
Average Consumption Rate: Electricity consumption speed for the EV.

Average Speed: Average speed of the EV.

Adoption Rate: Adoption ratio on ISTDM trip data.

Factor 1-3: Some factors that can affect the energy consumption rate. (0.0 - 1.0)
Simulation Year: Option for determining the year of simulation trip data.

Figure 4.6 Configuration layout of simulation model in AnyLogic.
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Figure 4.7 EV adoption rate variation chart over time (2025, 2030, and 2035).

TABLE 4.7
Summary of ten simulation scenarios configurations
EV Energy
Consumption Thresholds of
EV Adoption EV Battery Rate (kWh/100 EV Speed Initial Charging
ID Year Rate (%) Capacity (kWh) miles) (mph) Level User Defined Factors
1 2025 5 78.0 34.6 60.0 (50%, 80%) 1.0 for all three factors
2 10
3 15
4 2030 10
5 21.25
6 325
7 2035 15
8 325
9 50
10 50 0.8, 0.85, 0.95

trip, including the geospatial locations, energy consump-
tion amount, etc. Table 4.8 provides a comprehensive
summary of the simulation results. It is worthy to state
the statistics shown in the table are all computed from
failed trips. Through comparison of the first nine scena-
rios, it can be observed that they share a very similar
pattern except the energy part, which means the trip
data and EV adoption rate only influences the magni-
tude of failed trips. The energy gap column basically
follows the trend as the number of failed trip column.
The results of first nine scenarios also imply that an
appropriate charging pattern can be developed to help
accomplish most long-distance EV travel in the optimal
driving conditions. However, it is challenging to main-
tain the desired conditions in daily trips. As a variant of
Scenario #9, the Scenario #10 derives totally different
outcomes, where the failure rate increases to 26.08%
from 2.15%. It means the change of user defined factors
has a significant effect on the trip accomplishment.
Moreover, the 26.08% failure rate is a cause of concern
in the context of EV charging facilities deployment at
state highways.

4.2 Spatial Analysis for EV Energy Demand in Indiana

In addition to the statistical summary in the previous
subsection, the GIS-based visualization and analysis of
the simulation results are also conducted. Displaying
the features as geospatial elements in the map layer is
always essential and powerful. In this subsection, a
demonstration of the GIS-based spatial analysis on
the derived EV energy demand results in Indiana is
exhibited. The main scope of the spatial analysis is to
provide a visualization of the simulation outcomes
from previous model and help the team explore more
insights. The summary of the spatial analysis outcomes
is shown in Figure 4.8.

4.2.1 Data

Since the geospatial location information (latitude
and longitude) of the failed trips are also recorded in
the simulation results, it is simple to draw the stop
locations of the failed trips as the geospatial markers on
the map. Here we call it stop marker. To feed the
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TABLE 4.8

Result summary for ten simulation scenarios

Number of Failure Rate Energy Energy Energy Average Energy Gap
ID Number of Trips  Failed Trips (%) Consumption (kWh) Demand (kWh) Gap (kWh)  Per Failed Trip (kWh)
1 23,962 509 2.12 605,680.2 609,484.5 3,804.3 7.47
2 47,924 1,021 2.13 1,208,136.1 1,214,764.1 6,628 6.49
3 71,885 1,550 2.16 1,818,068.6 1,828,545.8 10,477.2 6.76
4 49,370 1,054 2.13 1,251,742.5 1,258,397.7 6,655.2 6.31
5 104,910 2,252 2.15 2,653,532.9 2,667,953.2 14,420.3 6.40
6 160,451 3,461 2.16 4,054,475.4 4,076,751.4 22,276 6.44
7 76,224 1,700 2.23 1,931,192.7 1,942,028.8 10,836.1 6.37
8 165,152 3,436 2.08 4,178,206.3 4,200,293.0 22,086.7 6.42
9 254,080 5,451 2.15 6,425,286.8 6,458,855.7 33,568.9 6.16
10 254,080 65,326 26.08 9,303,433.0 9,966,386.6 662,953.6 10.15
Note:

Energy consumption = energy consumed in simulated trips driven before failure.
Energy demand = total amount of energy required to finish all planned trips successfully.

Energy gap = energy demand — energy consumption.

Average energy gap per failed trip = energy gap/number of failed trips.

EV Daily Trip Modelling Simulation Outcomes

Geospatial Visualization & Analysis

Multi-Purpose
Designed Scenarios

ISTDM-Adopted
; EV Daily Trip Data / NOmBberor
; Trip Failure
4 N\
Agent-Based
Simulation Model Energy Geospatial
\ / Demand for  pootyres of
One-Way Failed Trips |
Charging

Spatial Point
Aggregation

Feature
Location
Visualization

Heat Map
Analysis

Figure 4.8 Summary of the performed spatial analysis flow.

information of stop markers into the ArcGIS Pro, it
requires some data transformation process. The ArcGIS
Pro supports the import file formats of spreadsheets,
such as MS Excel, CSV, etc. Thus, the team first filters
out the useless features in the AnyLogic database and
only keeps the geospatial information of the stop loca-
tions. Then the built-in function is employed to export
the database into the supported MS Excel files.

Note that in the following subsections, the team
chooses only four representative simulation scenarios to
conduct the spatial analysis. The full list of figures and
tables for all ten scenarios can be found in Appendix B.
The four selected simulations are Scenarios #1, #S5,
#9, and #10. The first three scenarios correspond to
three different level of fed trip data and the last one can
be supplementary. The GIS map layers showing the
stop markers (failed long distance trip locations) of
these four scenarios are shown as Figure 4.9. It can be
noticed the stop markers in Scenarios #1, #5, and #9

are mainly located along the primary state highway
while it becomes less clear in Scenario #10.

Apart from the stop marker features above, the
foundation map layer is another important element in
the spatial analysis. As shown in Figure 4.9, the markers
are displayed on the global topographic map, which is
too general to enable discernment of specific patterns.
Thus, the team considered two specific foundation map
layers, Indiana County Boundary and ISTDM Traftic
Analysis Region Segmentation. The two layers are inclu-
ded in Figure 4.10. Specifically, there are 92 counties and
17 ISTDM regions in Indiana.

4.2.2 Methodology

In general, large datasets create some unique challen-
ges for spatial analysis. It can be difficult to interpret
spatial patterns and gain an understanding of the data
when the dataset contains thousands of unique features.
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Figure 4.9 GIS map layer of EV stop markers at the failed trip locations.
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Figure 4.10 County boundary layer and ISTDM region layer of Indiana in ArcGIS.

Displaying the geospatial data as points is useful in a lot
of situations, like for mapping the locations of hospitals
in the city, or distribution centers in some regions. How-
ever, as the dataset gets larger, the ability to distinguish
patterns is reduced.

For example, the stop markers of scenario #10
shown in Figure 4.9 almost covers the whole state.
Obviously, the simple drawing of the markers can only
provide a direct localization of the features but make it
difficult to extract any regional modes. So, if such
location map is not ideal, which visualization techni-
ques can be applied? In ArcGIS Pro there are several
options; here the team mainly focuses on heat map and
spatial aggregation to explore the regional patterns.

A spatial point is a specific location while a geogra-
phic point is the element defined by a pair of latitude
and longitude coordinates. A point is represented by a
single dot or symbol on the map. While points are
perfect for showing the exact location of features, they
aren’t always visually intuitive, especially when the

amount is huge. Using smart mapping capabilities, the
researchers can present the point data in more mean-
ingful ways.

Smart mapping is a data-driven approach that lets
the user choose from a variety of visualization methods.
One of the available smart mapping styles for point
features is heat map. Heat maps are especially effective
when lots of points are to be displayed. The relative
density of points on the map is calculated and rendered
in a variety of color schemes to suit user needs. Typi-
cally, the color schemes range from cool colors
indicating low density to hot colors indicating high
density.

The following contents will provide a brief introduc-
tion on how to create the heat map of the feature
dataset in ArcGIS Pro.

® Click the target feature layer in the Contents panel to
reveal a set of contextual Feature Layer tabs, which is
outlined in Figure 4.11. These tabs provide user the
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Figure 4.11 Indication of feature layer tab sets on top panel in ArcGIS Pro.
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Figure 4.12 Parameter settings for heat map visualization.

capabilities to manipulate the properties of specific
feature data.

® Click the drop-down menu of Symbology and select Heat
Map from the available style options.

® Configure the parameters based on user needs. ArcGIS
Pro provides six adjustable characteristics for heat maps
which are shown in Figure 4.12.

® Radius is set to control the area searched when calcu-
lating the density of features.

® Weight field can be left as either None or an attribute
field with numeric data to support weighted density
calculation.

® Color schema specifies the color ramp that is used to
display different densities.

® ArcGIS Pro provides two rendering methods, Constant
and Dynamic. In the Constant method, the density is
constant regardless of the map extent, which is suitable
to compare density between different areas at the same
map scale. Comparatively, the density is dynamically
adapted to current visible features in Dynamic option.

® Rendering quality can be set to Fastest to speed up the
drawing process or Best to maximize the map quality.

® Vertical color bar provides direct ways to restrict
the color distribution, effectively making a “hotter” or
“cooler” map.

® After finishing configuring the parameters, the heat map
of selected point features will be automatically generated
and displayed upon the map layer.

Another spatial analysis tool is the spatial aggrega-
tion method, which uses a layer of point features and a
layer of polygon features to determine which points fall
within each polygon’s area. After determining this
point-in-polygon spatial relationship, statistics about
all points in the polygon are calculated and assigned to
the area. Figure 4.13 provides a brief description of the
spatial aggregation approach.

Spatial aggregation calculates the count of features,
or a statistic calculated with a specific field within
specified boundaries and displays the count using gradu-
ated symbols such as different-sized shapes or different
depths of colors. Spatial aggregation is most useful
when the chosen boundaries have some significance to
the analysis and warrant a comparison.

Compared to the heat map visualization, spatial
point aggregation is more flexible. As mentioned above,
a significant element in spatial aggregation is the boun-
dary layer. Generally, it consists of a set of polygons
designed based on the user requirement. Thus, when
calculating the relative density of the point features,
spatial point aggregation always strictly follows the
regional division formed by the boundaries. In another
word, the aggregation results are highly dependent on
the boundary layer.

The most basic aggregation will calculate the basic
statistics, including sum, minimal, maximum, average,
and standard deviation, on numerical fields for each
separate area. In addition, the statistical calculations
can also be grouped upon a field with categorical
values. In such application, the statistics are computed
for both the whole area and the individual group. The
outcome statistics can be viewed in the result layer’s
pop-up windows for each division.

The following contents demonstrate how to finish the
spatial point aggregation analysis with ArcGIS Pro.

® Click analysis>tools to open geoprocessing tools search-
ing dialog.

® Search and select the aggregate points (GeoAnalytics
Desktop Tools) to access the configuration of spatial
point aggregation analysis tool. The configuration dialog
is shown as Figure 4.14.

® Set the parameters based on user needs and click the run
button to generate the aggregation result layer. The
usage of each parameter is demonstrated below.

® Point layer refers to the primary point feature data to be
analyzed.

® Qutput feature class defines the name of the aggrega-
tion result layer. Generally, this field is automatically
generated according to the point layer.

® Polygon layer refers to the features assigning the boun-
daries for aggregation.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/12 25



iv‘\‘.A.
[TTTT

|

Figure 4.13 Process flow of spatial aggregation analysis.
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Figure 4.14 Configuration dialog of spatial point aggrega-
tion analysis tool.

® The settings for time step interval, time step repeat and
time step reference are only valid when the input point
layer is time enabled and represent an instant in time.
These parameters can embed the temporal relationship
extraction into the spatial analysis process.

® In the summary fields, users can complement any statistic
calculation on the numerical or categorical fields within
the input data. The added statistics would be calculated
and presented in the output layer.

4.2.3 Analysis of Spatial Data and Results

Figure 4.15 displays the heat map for stop markers
among the four scenarios. All four scenarios indicate
the center Indiana is most frequency area occurring the
trip failure. The heat maps of first three scenarios share
similar pattern of spectrum distribution while the last
one spreads the high density to a bigger range.

Figures 4.16 and 4.17 show the spatial aggregation
results of the four scenarios in terms of county
boundary and ISTDM region segmentation, respec-
tively. The numeric label tells the count of stop markers

within each area, and the color represents the relative
density of the stop markers. Compared to the heat
maps, the spatial aggregation results can provide more
organized outcomes corresponding to the boundaries.
From the figures, the aggregated layers of first three
scenarios are similar, which is consistent with the heat
maps. By observing the aggregation results at county
level division, the dense areas for failed trips are mainly
along the interstate highway. In terms of ISTDM
region level division, the Greater Indy region are much
denser than other areas. Moreover, compared to
Scenario #9, the Greater Indianapolis area becomes
much denser than other areas in Scenario #10, which is
the only potion possessing the blue color. It infers that
in the more realistic situation, most failed EV trips stop
near the central Indiana, which requires more attention
on EV charging infrastructure deployment.

In addition, Tables 4.9 and 4.10 are made to list the
top-10 counties and top-5 ISTDM regions containing
the stop markers in the aggregation results for each
scenario. In Table 4.9, each cell includes the county
name as well as the number of stop markers included.
Similarly, the cell in Table 4.10 implies the ISTDM
region name and the corresponding amount of stop
markers. From Table 4.9, it can be observed the
Marion County and Hendricks County always occupy
the top-2 places and the Morgan County, Madison
County are basically in the top-5. It indicates these
counties require more attention when planning the EV
charging infrastructure deployment. Similarly, referring
to Table 4.10, the Greater Indy Region, SIDC Region
and SR-46 Corridor Region are the main EV energy
deficit areas.

4.3 Discussion

The study in this section attempts to explore the
potential EV charging station location analysis with a
pilot simulation model and the GIS spatial analysis.
Questions about where the EVs would request for
charging can be answered by this model. However, it
also has some limitations. As mentioned above that
such model is a pilot version, it is developed based on
some simple and ideal assumptions. For example, it is
assumed that travelers charge their vehicles only at
home before embarking on their trip, and that the
existing charging stations are not integrated. Thus, the
EV comes to a stop immediately after it runs out of
energy. Regarding the complicated situation drivers may
encounter during the trips, only three straightforward
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Figure 4.15 GIS map layer of the density distribution EV failed trip locations (heat map).
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Figure 4.16 GIS map layer of the aggregation analysis of EV failed trip locations (county level).
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Figure 4.17 GIS map layer of the aggregation analysis of EV failed trip locations (ISTDM region level).
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TABLE 4.9

Top 10 counties for the number of stop markers for four scenarios

Rank Scenario #1 Scenario #5 Scenario #9 Scenario #10

1 Marion (31) Marion (164) Marion (355) Marion (3,371)

2 Hendricks (23) Hendricks (108) Hendricks (272) Hendricks (2,571)
3 Morgan (20) Johnson (91) Morgan (250) Madison (2,560)
4 Madison (20) Morgan (91) Madison (222) Morgan (1,901)
5 Bartholomew (19) Madison (88) Hamilton (199) Marshall (1,721)
6 Boone (18) Grant (72) Johnson (189) LaPorte (1,714)
7 Johnson (17) Hamilton (66) Boone (165) Hamilton (1,704)
8 Cass (13) Boone (65) Bartholomew (162) Boone (1,599)

9 White (13) Shelby (63) Huntington (147) Putnam (1,592)
10 Decatur (12) Bartholomew (61) Shelby (145) Owen (1,340)
TABLE 4.10

Top 5 ISTDM regions for the number of stop markers for four scenarios

Rank Scenario #1 Scenario #5 Scenario #9 Scenario #10

1 Greater Indy (155) Greater Indy (778) Greater Indy (1,876) Greater Indy (17,358)
2 NCIRPC (45) SR-46 Corridor (159) SR-46 Corridor (395) MACOG (4,821)

3 SIDC (40) SIDC (155) SIDC (394) KIRPC (4,208)

4 SR-46 Corridor (37) NCIRPC (148) NCIRPC (354) NCIRPC (4,101)

5 KIRPC (32) River Hills (128) KIRPC (327) SIDC (3,906)

linear factors are applied. In consequence, lots of
efforts could be made in the future studies to improve
the model. As expected by the team, the developed
simulation model can be used in other transportation
networks, creating a roadmap for strategic deployment
of EV charging infrastructure. For instance, the GIS
spatial analysis in previous section presents the
distribution as well as the hot spots of failure trips,
which can support transportation staffs designing the
EV charging station deployment layout. Therefore, a
more extensive study can be carried out by the means
of this model.

4.4 Summary

This chapter provides a framework for identifying
EV infrastructure deficit areas and for analyzing the
potential locations for EV charging station deployment.
It mainly consists of two parts: (1) the agent-based
simulation model developed to track EV demand and
frequency of charging on the way, and (2) GIS-
integrated spatial analysis to visualize the areas in the
state that are characterized by inadequate EV charging
infrastructure. The two parts form a logical flow, where
the model simulates several scenarios and derives out-
comes for the GIS application to finish spatial analysis.
The important and most crucial outputs of this chapter
were (1) a computerized model that can simulate EV
travel patterns to identify charging deficit areas, (2)
several scenario-based GIS feature layers which reveal
the EV energy demand distribution and the EV
infrastructure deficit areas, and (3) a practical workflow

including designing and accomplishing simulation
scenario and corresponding spatial analysis.

5. ASSESSMENT OF FUNDING NEEDS AND
FEASIBILITY ANALYSIS OF NEW INCOME
GENERATION STREAM MODELS

EV adoption is expected to increase in coming years.
This development can potentially cause the revision of
highway financing by changing the tax revenue base
from one dominated by fuel taxes and vehicle fees. In
Indiana, state and local transportation systems are
funded primarily from state revenues though taxes and
fees related to cars and commercial trucks (approxi-
mately 60% of the total revenue), and federal funds
(nearly 40% of total revenue) (Cambridge Systematics,
Inc. et al., 2015). The largest portion of state revenues
consists of motor fuel taxes (57%). Vehicle fees account
for 17% of the state revenues, toll proceeds contribute
17% and other miscellaneous fees constitute around
9% (Cambridge Systematics, Inc. et al., 2015). Addi-
tionally, EV owners in Indiana are currently charged an
annual flat EV fee (Bureau of Motor Vehicles, 2022).
Clearly, a large portion of state revenues are from
motor fuel taxes; therefore, any large-scale adoption of
EVs is expected to result in a significant decline in fuel
tax revenue generated, under the existing highway
taxation structure throughout the state. Thus, the
objective of this task (Task 3) is to conduct a financial
analysis to examine the funding needs and potential of
prospective funding mechanisms/policies to recover the
fuel tax revenue loss. The analysis is based on different
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EV market penetration levels, indicating that there will
be a transition period with a mix of electric and con-
ventional vehicles and with taxation policies that should
be in line with the new needs of highway financing. The
methodology and data used (Sections 5.1 and 5.2) as
well as the results of the analysis (Section 5.3) are pre-
sented in the following subsections. Lastly, the chapter
concludes with a discussion section (Section 5.4) and a
summary section (Section 5.5).

5.1 Methodology Overview

5.1.1 Impact on State Highway Revenue and Optimal EV
Fee

The methodology for this objective is based on
estimating an annual supplemental fee to be charged
per EV to break-even the fuel tax revenue loss that is
associated with the EV adoption (“recovery EV fee”).
Figure 5.1 illustrates the approach followed to calculate
the recovery EV fee. The first important research
output is the revenue loss per vehicle class (revenue that
would be generated from EVs if they were running on
gasoline or diesel). To determine this revenue loss, the
annual vehicle miles travelled (VMT) of EVs were
estimated by multiplying the annual VMT per vehicle
with EV registrations. The EV registrations were
estimated by multiplying the EV market penetration
by the vehicle registrations. Taking the ratio of the
estimated annual VMT of EVs by the fuel efficiency per
vehicle class produces the fuel gallons consumed or lost
due to the growth of EVs in the market.

Next, the fuel revenue loss is estimated by multi-
plying the volume of fuel consumed by the fuel tax. The
recovery EV fee that could make up the decrease in
revenue generation is calculated by distributing the
revenue loss to the EV registrations. The results are

EV registrations

EV market penetration x vehicle
registrations

'

.

Fuel gallons lost

Revenue loss

Recovery EV fee
For each vehicle class
From 2021 to 2035

provided per vehicle class and from 2021 to 2035
following the analysis period of the latest INDOT
revenue model (INDOTREV-2) (Agbelie et al., 2010).
The vehicle classes considered are automobiles, light
duty trucks, motorcycles, buses, single unit trucks,
combination trucks. These six vehicle classes form the
following two main vehicle groups: light duty vehicles
(automobiles, light trucks and motorcycles) and med-
ium and heavy duty vehicles (buses, single, unit trucks,
and combination trucks).

The data needed to compute the loss in revenue on
an annual basis (Figure 5.1) is described in more detail
in the next section (Section 5.2). Projections for each
future year are made based on available sources or
predictive analysis from historical data (linear trend
analysis, regression models, average flat line). Scenario
development related to different levels of EV market
penetration in 2035 was also conducted and the impact
on highway revenue was estimated. The evolution of
market penetration from 2021-2035 is estimated based
on the assumption of a logistic S-curve. This methodol-
ogy is in line with other studies, which used S-curves to
predict market penetration of new technologies (e.g.,
Choi et al., 2013, Konstantinou, 2019, Trinko et al.,
2022). The logistic curve is determined by specifying
two coordinates (year, market penetration level) on the
curve. The equation of the S-curve is as follows
(Equation 5.1):

1

This equation is transformed by adding two para-
meters (o0 and Tg) to reflect the growth of market

penetration (Equation 5.2):

1

S (x)= The i Toy (Equation 5.2)

Annual Vehicle Miles Travelled
(VMT) of EVs

Annual VMT per vehicle x EV registrations

_

VMT of EVs / fuel efficiency

(gallons lost x % gas consumed x taxes associated with gas)+
(gallons lost x % diesel consumedx taxes associated with diesel)

Revenue loss / EV registrations

Figure 5.1 Methodology to calculate recovery EV fee.
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where f(x) indicates the market penetration value
t indicates the time (year)
a is a parameter that stretches or compresses time
Ty is a parameter and shifts the timeline of the curve

For each scenario, the fuel tax revenue loss, recovery
EV fee per vehicle class, fuel tax revenue, and revenue
from vehicle registrations were calculated for each year
of the analysis period. The fuel tax revenue loss and
recovery EV fee were calculated as described in Figure
5.1. The fuel tax revenue was estimated by multiplying
the volume of fuel consumed by the specific fuel type tax.
The revenue expected from vehicle registrations is calcu-
lated as the product of the number of vehicles registered
and the respective registration fees. Registration revenues
from driving licenses and other registration-related items
are also estimated as the product of the number for each
registration-related item and the corresponding registra-
tion fee. The revenue from vehicle registrations is calcu-
lated based on both the existing/current registration fee
for EVs and the recovery EV fee.

A conceptual figure or causal loop diagram (Figure
5.2) was also established to demonstrate the main
parameters and outcomes of the process as well as their
relationships (Labi, 2014). This diagram visualizes the
behavior/structure of a system and provides insights
regarding the system dynamics using causal links (Labi,
2014). In particular, this diagram uses arrows as links to
show the causal relationships between each pair of para-
meters. The arrows are labeled as positive or negative,
showing the direction of influence of one parameter (the
start of the arrow) to the other parameter (the end of the
arrow). For example, an increase in the gallons lost due
to the popularity of EVs is accompanied by an increase
in the revenue loss. For the purposes of this task, a
linear pattern is presented, meaning that straight lines/

Total vehicle

EV adoption rates registrations

+ ar

4

EV registrations

— » Revenue loss
-

Fuel type % -'|- ar

Fuel tax

Fuel efficiency

arrows are used to depict the relationships across the
system components since they are simple and easily
understood (Labi, 2014).

Figure 5.2 describes the system dynamics that exist to
calculate the recovery EV fee (final outcome). Besides
the arrows and their labels, this figure uses colors to
show the order of the calculations to estimate the final
outcome. In particular, the first calculated parameter is
the EV registrations that come from data on the EV
market penetration levels and the total vehicle registra-
tions. As the EV market penetration rate or vehicle
registration increase, EV registrations increase as indi-
cated by the positive sign of the specific arrow/link. When
EV registrations increase, the VMT of EVs increase and
the gallons consumed or lost also increase. As the gallons
lost increase, revenue loss increases. Revenue loss is also
influenced by the forces of fuel tax and the percentage of
vehicles that belong to each fuel type (diesel or gas). As
the revenue loss increases, the recovery EV fee per vehicle
also increases to cover this loss.

It is expected that as EV registrations increase,
revenue loss is distributed to more vehicles and thus the
recovery EV fee decreases. It is also expected that as
revenue loss increases, the recovery EV fee increases.
However, due to system dynamics, the ratio of revenue
loss to EV registrations stays always the same, even if
different EV market penetration levels are applied.
Hence, the net effect of all parameters on the recovery
EV fee was found to be the same.

5.1.2 Impact on Revenue Distributed to INDOT

Following the methodology described above, the EV
recovery fee and the impact on state highway revenue
were estimated. This highway revenue is distributed to
different accounts and funds according to the legisla-

» B | Data/assumptions
Calculated parameters
Final outcome

A influences B

__ Recovery EV fee

", per vehicle )
VMT per vehicle

+ t
e-VMT
Gallons « Order of steps
» consumed
— and lost

WA W -

Figure 5.2 Causal loop diagram of system dynamics for calculating the recovery EV fee.
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tively mandated ratios (Agbelie et al., 2010). Figure 5.3
illustrates the Indiana transportation funding chart
for the fiscal year 2021, as adopted from INDOT.
Following the flow of funds and accounts that lead to
INDOT or State Highway Fund, the corresponding
fuel tax revenue and revenue loss for INDOT were
calculated. This includes losses in fuel taxes affected by
EVs: the gasoline use tax, motor carrier fuel tax, special
fuels tax and gasoline excise tax. In particular, the
INDOT revenue loss is determined using Equation 5.3:

LOSS]NDOT = (a% . GUTEV) + (b% . MCFUTEV)
+(¢%-d% - RAFDgy)+ (¢% - x% - RAFDgy)

+(f % x% - GUTgy) (Equation 5.3)
where a, b, c, d, e, f, and x the legislatively mandated
ratios (percentages). X is the percentage of the total
revenue from the Motor Vehicle Highway Account
distributed to the State Highway Account (62%).

GUTEgy the revenue from gasoline use tax distributed
directly to the State Highway Account (using a) and the
Motor Vehicle Highway Account (using f).

MCFUTYEy the revenue from motor carrier fuel use
tax.

RAFDpgy the remaining available revenue for dis-
tribution (generated from special fuels tax and gasoline
excise tax) distributed to the Motor Vehicle Highway
Account (using e) and Highway Road and Street Fund
(using c).

Loss;npor the fuel tax revenue loss for INDOT due
to the emergence of EVs.

As can be seen from Figure 5.3, all revenue from
“Electric/Hybrid fees” is distributed to the Local Road
and Bridge Matching Grant Fund (Community Cros-
sings) and not to the State Highway Fund or INDOT.
According to INDOT, if the number of EVs increases,
a portion of or all revenue from EV fees can then be
distributed to the State Highway Fund. This introduces
uncertainty in terms of (1) the conditions at which
INDOT will start to collect revenue fully or partially
from EV fees (EV market penetration level for EV
revenue collection and year of EV revenue collection)
and (2) the percentage of revenue that will be distri-
buted to INDOT. To solve this problem, a scenario
analysis was conducted to estimate the revenue loss and
the revenue that is distributed to INDOT from EV fees.
The scenarios were built for different years when
INDOT starts to collect revenue from EV fees, for
different EV market penetration levels at which
INDOT starts to collect revenue and for different
percentages of revenue distributed to INDOT. Note
that even if the percentage of revenue collected from EV
fees is 100%, x% is distributed to INDOT according to
the legislatively mandated ratios (Figure 5.3). Equation
5.4 shows the calculation of the revenue from EV fees
distributed to INDOT (RevINDOT):

Revinpor =x% -y - ReVipa (Equation 5.4)

Where x is the legislatively mandated ratio associated
with the account that first collects EV fees (62% in this
case), y is the percentage of EV revenue distributed to
INDOT/State Highway Fund and Rev,,,; is the total
revenue from EV registrations (before distribution to
the different accounts).

Table 5.1 shows a summary of the values used in the
scenarios for each parameter (EV market penetration
level, year of EV revenue collection, percentage of EV
revenue collected by INDOT). S-curves were developed
for each EV market penetration level. Different com-
binations of penetration levels for light duty vehicles
versus medium and heavy duty vehicles were examined.
For example, one scenario assumed 5% EV market
penetration level for each vehicle class of the light duty
vehicles (automobiles, motorcycles, light trucks) and
10% EV market penetration level for each vehicle class
of medium and heavy duty vehicles (buses, single unit
and combination trucks). Following the scenario devel-
opment, the most likely scenario as well as the optimistic
and pessimistic scenarios for INDOT were chosen to be
reported in the results section (Section 5.3).

5.2 Data

In order to achieve the objective of this task, research
is necessary to collect data related to electric and
conventional vehicles in order to quantify the impact on
revenue. The following paragraphs discuss the data
sources and forecasts for each data type used.

5.2.1 VMT

To calculate the VMT of EVs, the VMT per vehicle is
needed. The historical VMT per vehicle were obtained
from the Highway Statistics Series from 2010 to 2019
(FHWA, 2021). Trend analysis was used to make pro-
jections until 2035. It was observed though that VMT
per vehicle for all vehicle classes except for automobiles
were decreasing over time which was not considered
realistic. Thus, the average flat line was chosen to
forecast future VMT per vehicle of light trucks, motor-
cycles, buses, single unit trucks, and combination
trucks. The COVID-19 pandemic has caused various
social and economic changes that could change the
VMT prediction in the future. For this study, the
impact of COVID-19 was not taken into account since
it would constitute an outlier. Table 5.2 shows the VMT
per vehicle class, from 2021 to 2035.

5.2.2 Fuel Taxes

The estimation of the fuel tax highway revenue was
based on the following types of taxes: sales tax on
gasoline/gasoline use tax, gasoline excise tax, special
fuel tax, and motor carrier fuel use tax. The diesel
surtax no longer exists. It was repealed in the 2018
Indiana General Assembly and in lieu of the surtax, the
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TABLE 5.1

Scenario analysis to estimate the revenue distributed to INDOT

EV Market Penetration Levels

Year of EV Revenue Collection by INDOT

for Each Vehicle Class 2025 (%) 2030 (%) 2035 (%)
Automobiles 5, 10, 20, 25 10, 20, 30, 50, 100 10, 20, 25, 50, 100
Motorcycles 5, 10, 20, 25 10, 20, 30, 50, 100 5, 10, 20, 25, 50, 100
Light Trucks 5, 10, 20, 25 10, 20, 30, 50, 100 10, 20, 25, 50, 100
Buses 5, 10, 20, 25 10, 20, 30, 50, 100 10, 20, 25, 50, 100
Single Unit Trucks 5, 10, 20, 25 10, 20, 30, 50, 100 5, 10, 20, 25, 50, 100
Combination Trucks 5, 10, 20, 25 10, 20, 30 5, 10, 20, 25, 50, 100

Percentage of Revenue Collected by INDOT

0, 25, 50, 75, 100

TABLE 5.2

VMT (in thousands) per vehicle (2021-2035)

Year Automobiles Light Duty Trucks Buses Single Unit Trucks Combination Trucks Motorcycles
2021 11.88 12.39 18.12 12.81 64.73 2.34
2022 11.99 12.39 18.12 12.81 64.73 2.34
2023 12.09 12.39 18.12 12.81 64.73 2.34
2024 12.19 12.39 18.12 12.81 64.73 2.34
2025 12.29 12.39 18.12 12.81 64.73 2.34
2026 12.40 12.39 18.12 12.81 64.73 2.34
2027 12.50 12.39 18.12 12.81 64.73 2.34
2028 12.60 12.39 18.12 12.81 64.73 2.34
2029 12.71 12.39 18.12 12.81 64.73 2.34
2030 12.81 12.39 18.12 12.81 64.73 2.34
2031 1291 12.39 18.12 12.81 64.73 2.34
2032 13.01 12.39 18.12 12.81 64.73 2.34
2033 13.12 12.39 18.12 12.81 64.73 2.34
2034 13.22 12.39 18.12 12.81 64.73 2.34
2035 13.32 12.39 18.12 12.81 64.73 2.34
special fuels tax was increased (Indiana Legislative different sources depending on data availability.

Services Agency, 2018). To calculate the sales tax on gas,
the gasoline price was multiplied by 7% (Agbelie et al.,
2010). The EIA State Energy Data System (EIA, n.d.)
was accessed to obtain the average annual gasoline prices
for the transportation sector in Indiana from 1970 to
2018 in dollars per million British thermal units
($/MMBtu). These prices were converted to approximate
dollars per gallon ($/gallon) using the heat contents
provided in the petroleum consumption and fuel ethanol
table (EIA, 2022). Historical data on the rates of gasoline
and special fuel was collected from Indiana Legislative
Services Agency (2018) that contained fuel tax rates for
some years between 1943 to 2018. Trend analysis was
used to forecast gasoline prices, gasoline and special fuel
taxes. The motor carrier fuel use tax (tax on fuel con-
sumed by trucks in Indiana but purchased in another
state) is taxed the same as the special fuel tax since 1985
(Indiana Legislative Services Agency, 2018). Table 5.3
shows the gasoline prices, gasoline and special fuel taxes
from 2021 to 2035.

5.2.3 Vehicle Registration Frequencies

Vehicle registrations were necessary to estimate the
vehicle registration revenue and were obtained from

Registration frequencies for automobiles, motorcycles,
trucks, truck tractors, trailers and licensed drivers came
from the Highway Statistics reports for 2010-2019
(FHWA, 2021). There were no direct historical data
though for titles and other miscellaneous registration
categories (e.g., recreational vehicles, special machin-
ery, watercrafts etc.). For these registration categories,
prediction models found in Agbelie et al. (2010) were
used with updated data for their independent variables.
In particular, the number of vehicle title registrations is
a function of the driving age population which was
obtained from the Highway Statistics reports from
2010-2019. Registrations of recreational vehicles, spe-
cial machinery, recovery vehicles, watercrafts and other
miscellaneous categories are influenced by GDP.
Historical data on GDP was collected for 2010-2020
from the U.S. Bureau of Economic Analysis (2022).
Trend analysis was used to forecast vehicle registration
frequencies up to 2035. For the registration categories
for which a downward trend was observed from
the analysis (automobiles, buses, licensed drivers), the
average flat line was used instead of trend analysis. To
disaggregate the main registrations to the necessary
registration categories such as the different weight
classes for trucks, tractors, trailers and the types of
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TABLE 5.3
Fuel tax rates (2021-2035)

Gasoline Price Gasoline Fuel Tax

Special Fuel for MCFUT

Special Fuel Fuel Tax

Year ($/gallon) (cents/gallon) (cents/gallon) Fuel Tax (cents/gallon)
2021 $2.71 31.00¢ 50.00¢ 50.00¢
2022 $3.30 31.21¢ 51.34¢ 51.34¢
2023 $3.37 31.35¢ 51.65¢ 51.65¢
2024 $3.45 31.92¢ 52.68¢ 52.68¢
2025 $3.52 32.49¢ 53.72¢ 53.72¢
2026 $3.59 33.06¢ 54.75¢ 54.75¢
2027 $3.67 33.63¢ 55.78¢ 55.78¢
2028 $3.74 34.19¢ 56.81¢ 56.81¢
2029 $3.82 34.76¢ 57.84¢ 57.84¢
2030 $3.89 35.33¢ 58.88¢ 58.88¢
2031 $3.96 35.90¢ 59.91¢ 59.91¢
2032 $4.04 36.47¢ 60.94¢ 60.94¢
2033 $4.11 37.04¢ 61.97¢ 61.97¢
2034 $4.19 37.61¢ 63.01¢ 63.01¢
2035 $4.26 38.18¢ 64.04¢ 64.04¢
TABLE 5.4
Vehicle registration frequencies (in millions) (2021-2035)

Truck Licensed
Year Automobiles Buses Trucks Motorcycles Tractors Trailers Drivers Titles Miscellaneous
2021 3.31 0.02 3.89 0.27 0.32 1.07 4.67 5.15 42.29
2022 3.44 0.02 3.98 0.28 0.33 1.09 4.70 5.22 44.82
2023 3.57 0.02 4.07 0.29 0.34 1.12 4.73 5.29 47.34
2024 3.70 0.02 4.16 0.30 0.36 1.15 4.76 5.36 49.87
2025 3.84 0.02 4.24 0.30 0.37 1.17 4.79 543 52.39
2026 3.97 0.02 4.33 0.31 0.39 1.20 4.82 5.50 54.92
2027 4.10 0.02 4.42 0.32 0.40 1.23 4.86 5.58 57.45
2028 4.23 0.02 4.51 0.33 0.42 1.26 4.89 5.65 59.97
2029 4.36 0.02 4.60 0.33 0.43 1.28 4.92 5.72 62.50
2030 4.49 0.02 4.68 0.34 0.45 1.31 4.95 5.79 65.02
2031 4.62 0.02 4.77 0.35 0.46 1.34 4.98 5.86 67.55
2032 4.75 0.02 4.86 0.35 0.48 1.36 5.01 5.93 70.07
2033 4.88 0.02 4.95 0.36 0.49 1.39 5.04 6.00 72.60
2034 5.01 0.02 5.04 0.37 0.51 1.42 5.07 6.07 75.12
2035 5.14 0.02 5.12 0.38 0.52 1.44 5.10 6.14 77.65

buses, distribution factors were applied based on Agbelie
et al. (2010). Table 5.4 presents the vehicle registration
frequencies from 2021 to 2035.

5.2.4 Vehicle Registration Fees

Vehicle registration fees was obtained from the fee
chart of Bureau of Motor Vehicles (BMV) (2022) and
augmented with data from Agbelie et al. (2010) when
this was necessary. Following the approach of the
INDOT revenue model (Agbelie et al., 2010), the
conventional vehicle registration fees remain the same
across the years. As for EVs, EV owners pay a sup-
plemental fee of $150 in Indiana (Bureau of Motor
Vehicles, 2022; Indiana Legislative Services Agency,
2018). The fee is termed “registration” fee by the BMV,
a term that could be described as a misnomer because it

is intended to cover not only registration but also road
use. Additionally, it was assumed that this EV sup-
plemental “registration” fee follows the inflation rate.
Historical data on inflation rate (12-month percent
change in CPI) from 2010 to 2020 was collected from
the U.S. Bureau of Labor Statistics (n.d.) and the
average flat line was used to project to 2035 (Knoema,
2022). Note that the data on existing EV supplemental
“registration” fees (Figure 5.4) was needed to compare
the registration revenue generated by existing EV fees
with the registration revenue generated by the recovery
EV fee.

5.2.5 Fuel Efficiency

Historical data from 2010 to 2019 related to the fuel
efficiency (miles per gallon) of automobiles (“light duty
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Figure 5.4 Existing/projected (battery) EV supplemental “registration” fees (2021-2035).

TABLE 5.5
Fuel efficiency (in miles per gallon) per vehicle class (2021-2035)

Year Automobiles Light Duty Trucks Buses Single Unit Trucks Combination Trucks Motorcycles
2021 24.59 17.99 7.42 6.61 5.36 44.22
2022 24.73 18.09 7.45 6.63 5.39 44.30
2023 24.86 18.18 7.47 6.66 5.41 44.37
2024 25.00 18.28 7.50 6.69 5.43 44.45
2025 25.14 18.37 7.53 6.72 5.45 44.53
2026 25.28 18.47 7.55 6.74 5.48 44.61
2027 25.41 18.56 7.58 6.77 5.50 44.69
2028 25.55 18.66 7.61 6.80 5.52 44.77
2029 25.69 18.75 7.64 6.83 5.54 44.84
2030 25.82 18.85 7.66 6.85 5.56 44.92
2031 25.96 18.94 7.69 6.88 5.59 45.00
2032 26.10 19.03 7.72 6.91 5.61 45.08
2033 26.23 19.13 7.74 6.93 5.63 45.16
2034 26.37 19.22 7.77 6.96 5.65 45.23
2035 26.51 19.32 7.80 6.99 5.67 45.31

short wheelbase”), light trucks (“light duty long wheel-
base”), and single unit trucks (“heavy duty trucks”) was
found from EIA (2021b). To estimate the fuel efficiency
for combination trucks, 2017 data from the U.S.
Department of Energy (2017) was used. The ratio of
the reported fuel efficiency of single unit trucks to the
fuel efficiency of combination trucks in 2017 was esti-
mated. This ratio was used to determine the fuel
efficiency of combination trucks from 2010-2019 based
on the Energy Information Administration data for
single unit trucks. For motorcycles and buses, historical
data for the same period was obtained from the table of
vehicle miles of travel of Highway Statistics (FHWA,
2021) that also reported the average miles traveled per
gallon of fuel consumed. Trend analysis was used to
make projections to 2035. The results are presented in
Table 5.5.

5.2.6 Fuel Consumption Percentages

Data on the percentages of fuel consumed by each
vehicle type were from Agbelie et al. (2010). The fuel
consumed by automobiles and motorcycles was consid-
ered to be 100% gasoline. Of the light and single unit
trucks 95% and 5% of were considered to use gasoline
and special fuel, respectively. The amount of fuel con-

sumed by buses and combination trucks was considered
100% from special fuel. These percentages were assumed
to remain the same during the analysis period. The motor
carrier fuel use tax is imposed on fuel used in the state but
bought elsewhere. Thus, this tax is also multiplied by a
percentage of the (diesel) gallons consumed by motor
carriers (combination trucks). This percentage was
obtained for 2021-2035 from Agbelie et al. (2010).

5.2.7 EV Market Penetration

The EV market penetration was defined as a per-
centage of vehicle registrations. Different scenarios for
the EV market penetration levels were examined. These
scenarios were based on EV market penetration levels
that were equal across the main vehicle groups (light,
medium, and heavy-duty vehicles) or also EV market
penetration levels that differ for certain vehicle types.
As described in Section 4.1, s-curves were used to
project the EV market penetration. For 2018, EV
market penetration data was compiled from FHWA
(2021) (total vehicle registrations) and the U.S. Depart-
ment of Energy (2018) (EV registrations) to find an
estimation of the EV market penetration in 2018 and use
it in the s-curve. The data from the U.S. Depart-
ment of Energy referred to light duty vehicles (around
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TABLE 5.6
Data types and sources for financial analysis

Data Type Data Source

Projection Method

Vehicle Miles Travelled (VMT)

Highway Statistics Series (FHWA, 2021)

Trend analysis (automobiles)

Average flat line (light trucks, motorcycles,
buses, single unit trucks, combination
trucks)

Fuel taxes:
Sales tax on gasoline
Gasoline tax
Special fuel tax
Motor carrier fuel use tax

Agbelie et al. (2010)
EIA (n.d., 2022)

Trend analysis

Indiana Legislative Services Agency (2018)

Vehicle registration frequencies Agbelie et al. (2010)

Highway Statistics Series (FHWA, 2021)
U.S. Bureau of Economic Analysis (2022)

Trend analysis (motorcycles, trucks, truck
tractors, trailers)

Average flat line (automobiles, buses, licensed
drivers)

Regression models (titles, and other
miscellaneous categories)

Vehicle registration fees Agbelie et al. (2010)

Constant throughout the analysis period

Bureau of Motor Vehicles (BMV) (2022)

Knoema, 2022

U.S. Bureau of Labor Statistics (n.d.)

Fuel efficiency (miles/gallon)
EIA (2021b)

U.S. Department of Energy (2017)

Trend analysis

Highway Statistics Series (FHWA, 2021)

Fuel consumption percentages Agbelie et al. (2010)

Constant throughout the analysis period
(for gas/diesel)

EV market penetration
FHWA (2021)

U.S. Department of Energy (2018)

Scenario analysis
S-curve

0.05% EV market penetration level in 2018). For medium
and heavy duty vehicles, a 0% EV market penetration
level was assumed for 2018. Table 5.1 of Section 5.1
shows the EV market penetration levels that were tested
with different combinations for the vehicle types and the
year at which this penetration level is achieved. Table 5.6
summarizes the main inputs of the analysis along with the
data sources and projection methods.

5.3 Analysis of Data and Results

In this section, the findings for the recovery EV fee as
well as the impact on the revenue from 2021 to 2035 are
presented, assuming continuation of existing taxation
structures.

5.3.1 Recovery EV Fee

The ratio of revenue loss to EV registrations pro-
duces the recovery EV fee that stays constant even for
different scenarios due to system dynamics, as exp-
lained in Section 5.1. Figure 5.5 shows the annual
recovery EV fee from 2021 to 2035 for each automobile,
motorcycle, light duty truck and bus as well as the
existing annual EV fee in Indiana for comparison.
Figure 5.6 shows the annual recovery EV fee for each
combination truck along with the existing EV fee in
Indiana from 2021 to 2035.

The figures show the recovery EV fee in dollars per
year that should be charged annually to each vehicle
class to break even the fuel tax revenue loss. Since the
fuel tax revenue loss will keep increasing over the years
as the EV market penetration increases, the recovery
EV fee follows the same trend. As expected, the existing
annual EV fee is significantly lower to the proposed EV
fee (the recovery EV fee), except for the vehicle class of
motorcycles. To maintain the same tax revenue per
vehicle, annual fees ranging from $241 (in 2021) to $342
(in 2035) for automobiles, $344 to $435 for light trucks,
$1,246 to $1,488 for buses, $969 to $1,243 for single
unit trucks, $6,192 to $7,321 for combination trucks
and $26 to $35 for motorcycles would be needed over
the analysis period.

As it can be observed, the recovery EV fee is high for
heavier vehicles such as buses, single unit trucks and
combination trucks. This high amount can be justified
since each heavier vehicle pays additional taxes and
contributes more to the fuel tax revenue due to its
vehicle class characteristics. Hence, to break even the
revenue that is lost, a high fee is necessary.
Furthermore, this fee is an annual, direct, or one-time
fee. The amount of money of this fee can be considered
the same as the total amount that would be paid for fuel
taxes for all the times these vehicles would fill their fuel
tanks throughout the year. Also, it may be noted that
the recovery EV fee for all EV classes is intended to
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Figure 5.5 Recovery EV fee for automobiles, light duty trucks, buses, single unit trucks, and motorcycles.
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Figure 5.6 Recovery EV fee for combination trucks.

cover both registration and road use and therefore, it is
much higher than the registration fee of a conventional
vehicle.

5.3.2 Impact on Revenue

The impact of the adoption of EVs on the highway
revenue was estimated before and after its distribution
to the State Highway Fund or INDOT. Scenario anal-
ysis was conducted for different years when INDOT
starts to collect the revenue from EV fees (fully, or
partially with the locals), for different EV market pene-
tration levels at which INDOT collects the EV revenue
and for different percentages of EV revenue that is
distributed to INDOT (refer to Table 5.1). In this

2029 2031 2033 2035

== Current Fee

section, the results are presented for the most likely
scenario and an optimistic and pessimistic scenario
from the perspective of INDOT, not the entire state.

(a) Most Likely Scenario

Literature review was conducted to find the combi-
nation of parameters (Table 5.1) that would form a
baseline or more likely scenario for the future. This
review focused on searching for realistic values for
future EV market penetration levels for light duty
versus medium and heavy duty vehicles as well as the
year at which these market penetration levels will occur.
Limited market data/projections about EVs exists to
date for Indiana and thus the scale of the values found
mainly refers to the U.S. The year of 2030 has been
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used as a target for various goals regarding alternative
fuel vehicles. For example, an ambitious new target has
been set requiring half of all new vehicles sold in the
U.S. in 2030 to be zero-emissions vehicles, including
battery electric, plug-in hybrid electric, or fuel cell vehi-
cles (The White House, 2021). Major automakers
endorse the specific target and plan for 50% of electric
cars by 2030 (The White House, 2021). For the case of
Indiana, information about market penetration rates
of light duty vehicles in 2030 were obtained from
M.J. Bradley & Associates (2018). According to their
moderate scenario for EV market penetration in Indiana,
a 5% market penetration level seems more likely to
happen. This information was also validated though
communications with INDOT Econometrics and Fore-
casting Division.

Additionally, a memorandum of understanding has
been signed by a diverse mix of states that calls for 30%
of new medium and heavy duty vehicle sales to be zero-
emission by 2030 (NESCAUM, 2020). Furthermore,
a stated preference survey of 200 truck fleet managers
was conducted in the U.S. and solicited information
related to trucking firm and fleet characteristics, and
opinions on electric trucks. The survey was distributed
during May 2021. Descriptive statistics of the survey
data included the percentages of the medium and heavy
duty fleet that truck fleet managers would electrify by
2030. The survey produced a pessimistic, average and
optimistic scenario for the future adoption of electric
medium and heavy duty vehicles according to the truck
fleet managers’ responses. The pessimistic scenario was
chosen as the most likely scenario of this analysis. This
is because the current EV share in Indiana is relatively
low compared to the average EV share in the U.S.
or compared to the EV share of top states such as
California (Alliance for Automotive Innovation, 2022)
and high adoption rates are unlikely to be reached
without aggressive policy action (M.J. Bradley &
Associates, 2018). The pessimistic scenario projects
30% electric medium- and heavy duty vehicle market
penetration level in 2030.

Figure 5.7 shows the fuel tax revenue and revenue
loss for all vehicle classes from 2021 to 2035 in Indiana.
The fuel tax revenue (blue bars) refers to the revenue
that would be generated from gasoline or diesel vehicles

4.5
4.0

Revenue ($B)

T

given the most likely EV market penetration levels. The
graph also presents the fuel tax revenue loss due to EVs
(red bars). For example, in 2035, the total fuel tax
revenue will be around $3 billion due to the revenue loss
associated with the emergence of EVs ($2.1 billion). If
there was no revenue loss though, the total fuel tax
revenue would be equal to around $5.1 billion. The
average annual growth rate of the revenue loss is
around 57% and reduces over the years. The fuel tax
revenue decreases by around 21% from 2030 to 2035.
Figure 5.8 focuses on the fuel tax revenue loss and
breaks it down by vehicle class. As expected, the fuel
tax revenue loss is higher for these vehicle classes that
have higher EV market penetration levels (e.g.,
combination trucks).

Figures C.1 and C.2 of Appendix C illustrate the
impact of the proposed recovery EV fee and the existing
EV fee on the revenue that is generated by the total
vehicle registrations from 2021 to 2035 in Indiana. This
revenue is the summation of all vehicle registration fees
with the recovery EV fee or the existing EV fee. These
two graphs are based on the premise that the recovery
EV fee will be implemented as a supplemental annual
registration fee for each vehicle class.

Figure 5.7 showed the fuel tax revenue and revenue
loss for the state due to the emergence of EVs. This
revenue is distributed to different accounts and funds
according to specific ratios, as described in Section 5.1.
The corresponding fuel tax revenue and revenue loss for
INDOT were calculated and are illustrated in Figure
5.9. As can be seen, the INDOT fuel tax revenue loss
increases from around $1 million in 2021 to around
$963 million in 2035. In 2035, INDOT will generate
around $1.3 billion due to the revenue loss associated
with EVs while approximately $2.3 billion would have
been generated if all vehicles were running on gasoline
or diesel.

As has been discussed in Section 5.1, scenarios were
developed to estimate the portion of revenue from EV
fees that is distributed to INDOT. This way, the poten-
tial of EV fees to cover the INDOT fuel tax revenue loss
can be examined (without considering other revenue
sources). Figures 5.10 and 5.11 show the revenue from
EV registrations that is distributed to INDOT for
different percentages of the share of EV-fee revenue

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

® Fuel Tax Revenue

® Fuel Tax Revenue Loss

Figure 5.7 Projections of total fuel tax revenue and revenue loss in Indiana (for the most likely scenario).
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Figure 5.8 Projections of revenue loss by vehicle class in Indiana (for the most likely scenario).
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Figure 5.9 Projections of INDOT fuel tax revenue and revenue loss (for the most likely scenario).
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Figure 5.10 Projections of total INDOT revenue from EV registrations (recovery EV fee) for different percentages of EV revenue
shares (for the most likely scenario).

0%, 25%, 50%, 75%, and 100%) for both the proposed collection by INDOT starts in 2030 with 5% market
recovery EV fee (Figure 5.10) and the existing EV fee penetration level for light duty vehicles and 30% market
(Figure 5.11). INDOT will start to be given a share of the penetration level for medium and heavy duty vehicles).
EV-fee revenues under the conditions of the most likely The results are presented from 2030 to 2035 since before
scenario (INDOT having a share of EV-fee revenue 2030 the INDOT revenue from EV fees is zero.
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Figure 5.12 Projections of total fuel tax revenue and revenue loss in Indiana (for the optimistic and pessimistic scenarios).

Imposing the proposed recovery EV fee (Figure 5.10)
can generate $69 million (given that 25% of the revenue
from EV fees is received by INDOT) to $277 million
(with 100% of the revenue being collected by INDOT) in
2030 and $328 to $1,311 million in 2035 for INDOT. For
revenue collection of 75% and 100%, the revenue from
recovery EV fees can cover the INDOT fuel tax revenue
loss. With 75%, there is a cumulative revenue surplus of
around $118 million from 2030 to 2035 and this surplus
increases to $1,224 million if INDOT receives 100% of
the EV-fee revenues. Figure 5.11 demonstrates that the
revenue from existing EV fees cannot cover the fuel tax
revenue loss for INDOT, even with 100% EV revenue
share in 2030. The revenue deficit with 100% EV revenue
received by INDOT, varies from about $111 million in
2030 to $963 million in 2035.

(b) Optimistic and Pessimistic Scenarios

The optimistic scenario, from the perspective of
INDOT, is based on 100% EV market penetration level
for all vehicle classes in 2030 and 100% EV revenue
collection from EV revenues, leading to large revenue
distributed to INDOT. Note that assuming 100% EV

market penetration in 2025 would also be considered
highly beneficial in terms of revenue generation but
such a scenario seems impossible given the current EV
market share both in Indiana and the U.S.; hence, it
was not considered. On the other hand, assuming 100%
EV market penetration level for all vehicle classes in
2030 and 0% collection of EV-fee revenue forms a
pessimistic scenario from the perspective of INDOT.
These two scenarios share the same EV market
penetration level and thus, the total revenue before the
distribution to INDOT will be the same. Figure 5.12
shows the fuel tax revenue and revenue loss. For these
scenarios, the cumulative revenue loss from 2021 to 2035
is around $50 billion which is approximately $42 billion
higher than the cumulative revenue loss of the most likely
scenario. As expected, the total fuel tax revenue in these
scenarios would be zero from 2030-2035 due to the 100%
EV market penetration level. Automobiles and light duty
trucks constitute the two top vehicle classes that are
associated with higher revenue loss compared to the
other vehicle classes (Figure 5.13). Figures C.3 and C.4 of
Appendix C show the impact of the proposed recovery
EV fee and the existing EV fee on the revenue that is
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Figure 5.14 Projections of INDOT fuel tax revenue and revenue loss (for the optimistic and pessimistic scenarios).
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Figure 5.15 Projections of total INDOT revenue from EV registrations (current and recovery EV fee) for optimistic and
pessimistic scenarios (pessimistic scenario: 0% or $0 distributed to INDOT).

generated by the total vehicle registrations from 2021 to
2035 in Indiana.

Figure 5.14 shows the fuel tax revenue and revenue
loss for INDOT. As can be seen, INDOT has a
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significant revenue loss that reaches $2.3 billion in 2035,
being 1,315 million higher than the corresponding
revenue loss in the most likely scenario. Figure 5.15
shows the revenue from EV fees that is distributed to
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INDOT. The pessimistic scenario assumes that 0% or
$0 distributed to INDOT. In the optimistic scenario,
the recovery EV fee can generate around $2,650 million
in 2030 and $3,177 million in 2035. Thus, the recovery
EV fee can cover the INDOT fuel tax revenue loss and
offers a revenue surplus that reaches $899 million in
2035. Similar to the most likely scenario, the current EV
fee leads to revenue deficit.

5.4 Discussion

5.4.1 Alternative Funding Mechanisms

Imposing additional annual fees for EVs to cover the
revenue loss is considered a potential key initiative in
the generation of transportation revenue but could
negatively impact EV market penetration. The pro-
posed recovery EV fees could be implemented as annual
fees but may cause the opposition of the public due to
their high rate, particularly for heavy vehicle classes.
Thus, alternative ways to implement this recovery EV
fee can be considered to ensure sufficient revenue as
well as support EV adoption. A mix of alternative
policy options to generate transportation revenues may
include annual/monthly/quarterly EV fees, taxes on
electricity, or mileage-based fees. In the context of fee
taxes, the estimated recovery EV fee can be converted
to a tax on electricity when charging an EV, measured
in $/kWh, or to a user fee based on the mileage driven
by the vehicle, measured in $/mile.

To calculate the VMT fee, the recovery EV fee was
divided by the average VMT per vehicle (refer to
Section 5.2 for the data sources). The estimation of the
tax on electricity required data on VMT per vehicle as
well as on each vehicle class’s efficiency or energy
consumption rate (kWh/mile) to calculate the EV
consumption per vehicle class (total kWh). The
recovery EV fee was divided by the total EV consump-
tion, resulting in a tax on electricity or “pay-as-you-
charge” fee. Note that here is still limited information
and uncertainty about EV efficiency (kWh/miles),
especially for heavier vehicles, and thus, average or
indicative values from publicly available data sources
were used in this study to provide an estimation. Table
5.7 shows the data sources used for each vehicle class. It
was assumed that the EV efficiency decreases by 2%
every year due to the EV technology improvement

TABLE 5.7
Data for EV efficiency

(Muratori et al., 2021). Figures 5.16 and 5.17 illustrate
the results regarding the VMT and pay-as-you-charge
fees per vehicle class and per year to break-even the fuel
tax revenue loss. The calculated pay-as-you-charge fee
represents the additional amount that should be
charged on electricity consumed by EVs in the state
to avoid the potential decrease in revenue due to EV
adoption. As can be seen, combination trucks, single
unit trucks and buses have higher VMT fees while
motorcycles, single unit trucks and light duty trucks
have a higher fee on a per kWh basis (compared to the
rest of the vehicle classes). This shows that heavy
vehicles pay more on a per mile basis, but this is not the
case with the pay-as-you-charge fee. Hence, the trend
(regarding which vehicle class will pay more or less) is
not consistent across the alternative mechanisms nor is
it always a reflection of vehicle weight trends, which
indicates that a combination of alternative mechanisms
could be applied. This combination may depend on
different factors such as EV market share or vehicle
class characteristics (e.g., weight) or other policy or
operational criteria.

Similar to increase in fuel efficiency over time due
to technology, EV efficiency values are expected to
increase in future, and this will affect EV revenues. If
that happens, the same revenue gap that has bedeviled
gasoline fuel revenues, will be experienced for EVs too.
The gap could be decreased by raising the electricity
price; however, this will be difficult because transporta-
tion is not the only source of electricity and raising
electricity prices to close the transportation revenue gap
will affect the residential and industrial markets unduly.

Table 5.8 describes the alternative policy options to
generate transportation revenues, including EV fees,
taxes on electricity or mileage-based fees. The informa-
tion shown in the table are based on the study results
and highway funding literature (see Section 2.7).

5.4.2 User Costs

EV users may pay additional charges that can hinder
the adoption of EVs; however, this is only one aspect of
the user total cost of ownership, since EV users can still
reap the benefits of lower fuel costs. To facilitate
comparison between fuel tax and electricity tax rates
and to address potential concerns for discouraging EV
adoption due to the additional fees, Figures 5.18(a—f)

Vehicle Class Value (kWh/mile)

Data Source

Automobiles 0.346
Light Duty Trucks 0.421
Buses 1.820
Single Unit Trucks 0.940
Combination Trucks 2.100
Motorcycles 0.064

Average of eleven latest models from EPA (2021)

Average of three Tesla Cybertruck models from Electric Vehicle Database (n.d.)
Number reported by Johnson et al. (2020)

Average of three models from CARB (2018) and Smith et al. (2019)

Average of six models from CARB (2018) and Smith et al. (2019)

Number reported by Huang et al. (2018)
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Figure 5.16 Projections of the recovery EV fee converted to a VMT fee in $/mile.
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Figure 5.17 Projections of the recovery EV fee converted to a pay-as-you-charge fee in $/kWh.

were created. The figures show the total user costs in
2021 and 2035 when driving a gasoline or diesel vehicle
and an EV. Each figure shows the fuel type (diesel or
gas) that is dominant in the respective vehicle class,
according to the fuel consumption percentages
described in Section 5.2. These costs correspond to
the average annual miles driven per vehicle in 2021 and
2035 (Section 5.2) and to fuel ($/gallon) or electricity
($/kWh) prices. In particular, the values and data
sources for gasoline prices have been reported in
Section 5.2. Historical data from 2015 to 2021 on
Midwest diesel retail prices was obtained from EIA
(2021a) (taking the average value for each year) and
trend analysis was used to forecast the prices to 2035.
The electricity prices considered were (1) the pay-as-
you-charge fee that was found from this analysis and
(2) the standard Midwest electricity price per kWh.
Historical data on the latter was found for 2015-2021
from the U.S. Bureau of Labor Statistics (2021) and the

prices were projected to 2,035 using trend analysis.
Therefore, the cost to drive an EV per year was
estimated by multiplying the total EV consumption (in
kWh) by the summation of the aforementioned
electricity prices. As can be seen from the figures,
driving an EV is less expensive than driving a
conventional vehicle, irrespective of the vehicle type.
More specifically, the cost of driving an EV is half of the
cost to drive a gasoline or diesel vehicle on average.
Considering potential incentives and/or special rates
that could be offered by utilities and local power
providers, this fuel cost difference would be even higher.

5.5 Summary

The improvement of fuel efficiency of the vehicle
fleet has influenced fuel tax revenue and thus,
transportation agencies are facing pressures in their
effort to operate and maintain transportation networks.
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Figure 5.18 Annual fuel costs for (a) automobiles, (b) light duty trucks, (c) buses, (d) single unit trucks, (¢) combination trucks,

and (f) motorcycles.

This study aimed to enhance the revenue structure by
assessing the funding needs, finding the optimal EV fee
by considering scenarios of EV market penetration levels
and by evaluating the potential of funding mechanisms to
recover the revenue loss. While past studies have focused
on examining the revenue impacts of EV adoption under
various scenarios for light duty vehicles mostly, this
research quantifies (1) the revenue impact associated with
all vehicle classes and (2) potential funding mechanisms
to prevent the decline in revenues generated. The results
can help state agencies better understand the impact of
EVs on the highway revenue and serve as a reference to
support decision-making on EV policies. The optimal
annual EV fee per vehicle class (recovery EV fee) that is
needed to recoup the fuel tax revenue loss was estimated.
The recovery EV fee was converted to a VMT and pay-
as-you-charge fee per vehicle class and per year through
which revenue generation from EVs would breakeven the
loss. Lastly, potential barriers to the implementations of
these options and policy aspects were examined.

6. EVALUATION OF STRATEGIC
PARTNERSHIPS AND GUIDANCE FOR EV
PREPAREDNESS BASED ON STAKEHOLDERS’
INTERVIEWS

There is limited literature regarding the existing
market and business models for the provision of EV
charging infrastructure, while charging infrastructure is
critical for widespread EV diffusion. This chapter sum-
marizes the outcomes of interviews conducted with
stakeholders involved in the EV ecosystem. The object-
ive of the interviews was to examine the strategic
partnerships and business models for the provision of
EV charging infrastructure as well as explore various
impacts and aspects related to the adoption of EVs.

6.1 Data and Methods

This section provides details on the process and
results of interviews conducted with multiple stake-
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holders for the evaluation of strategic partnerships and
business models for the provision of EV infrastructure.
The research team interviewed representative stake-
holders from the EV ecosystem. The purpose of the
interviews was to gather knowledge on the main factors
related to the promotion of EVs and evaluate the stra-
tegic partnerships and business models for the provision
of EV infrastructure. By reviewing the literature (see
Section 2.6), the following main groups of stakeholders
were identified: automotive industry/manufacturers,
utilities/energy providers, government/policy makers,
charging equipment/infrastructure providers, non-profit/
non-governmental organizations, and other; representing
a diversity of interests and organizations within the
electrification ecosystem to explore a range of issues and
needs. A purposive sample was used with the selection
criteria being their relevant experience to the research
questions and their key position in the target stakeholder
groups (e.g., representatives from automotive industry,
representatives from utilities etc.).

Stakeholders’ contact details were obtained through
the personal contacts of the research team. The research
team contacted the prospective interviewees with an
invitation email. The recruitment email indicated the
purpose of the interview and its format (virtual),
expressed the importance of the individual’s participa-
tion and opinion, and also included the interview
agenda. A follow up email was sent to the stakeholders
that agreed to participate to schedule the interview and
provide them with the specific discussion topics.
Additionally, the email included the link to a survey
that participants had to complete prior to the interview
in order to (1) provide their consent to participate in the
research study (using a consent form) and (2) to answer
general questions related to their organization and role
within your organization, their organization’s experi-
ence within the broadly defined EV ecosystem, and
their organization’s perspectives about EVs. The goal
of those questions was to help guide the discussion
during the interview and to supplement the interviews
with quantitative data. The survey took approximately
5-10 minutes to complete. A reminder email was sent to
all confirmed participants two days before the interview
to ensure maximum participation. The interview mate-
rial was developed by the research team and refined
following a pilot study based on a convenience sample.

TABLE 6.1

Note that all documents for the interviews (including all
recruitment materials) were reviewed and approved by
the Purdue Institutional Review Board (IRB-2021-
1263). The interview material agenda and discussion
guide are included in Appendix D.

The interviews were conducted virtually between
October 11 and December 3, 2021, using a video
conferencing service and each interview lasted approxi-
mately 40 minutes. A total of 23 individuals partici-
pated from 19 organizations/agencies. Table 6.1 shows
the number of organizations/agencies and participants
per stakeholder group.

The research approach consisted of semi-structured
interviews which are based on asking open-ended
questions while allowing participants to provide in-
depth responses. Qualitative semi-structured interviews
are one of the most widely applied methods of data
collection within the social sciences (Bradford & Cullen,
2011). The semi-structured nature of the interviews
enables participants to be more candid and freer to
express their opinions for a broader spectrum of sub-
jects (Gill et al., 2008). At the beginning of each inter-
view, participants were reminded about the purpose of
the interview, the main structure of the interview, the
consent form they had to complete before the interview
and the confidentiality of their responses. The partici-
pants that had not completed the pre-survey were sent
a link to the consent form only (without the rest of
the survey questions) to indicate their agreement to
participate before moving on to the main part of the
interview. Thus, although all participants completed the
consent form, 19 out of 23 took the full survey. The
research team also asked for permission to keep audio
recordings of the interviews for research integrity
reasons. The next part of the interview involved an
open-ended discussion around the research topics
guided by the research team (see Appendix D for the
discussion topics).

After the completion of the interviews, the research
team converted all the audio recordings into transcripts
in order to perform the next step of the qualitative
analysis, the content analysis. Krippendorff (2004)
defined content analysis as “a research technique for
making replicable and valid inferences from texts (or
other meaningful matter) to the contexts of their use”
(p. 18). Content analysis is a systematic way of identi-

Stakeholder groups, number of organizations/agencies, and participants

Stakeholder Group

Number of Organizations/Agencies

Number of Interviewees

Automotive industry/manufacturers

Utilities/energy providers

Government/policy makers

Charging equipment/infrastructure providers

Non-profit/non-governmental organizations
(e.g., clean cities)

Other (engineering consulting firms, researchers,
EV operators, etc.)

[SURN (SR (O I V)
BN W LW
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Figure 6.1 Visual description of the content analysis process
(adapted from Bengtsson, 2016; Ward, 2021).

fying all the main concepts arising in the interviews,
which afterwards would develop all the keywords and
themes produced during the interviews (Bengtsson,
2016; Stemler, 2000). Although content analysis is one
of the most common tools for conducting qualitative
research, and especially for identifying main ideas and
trends in given data source, it also poses some limi-
tations based mainly on misconception of researchers
and that use that method. The belief that content
analysis is mainly a word frequency-based method for
producing the main ideas is totally false and affects its
credibility (Stemler, 2000).

The research team read all transcripts that were
produced from the interviews in order to gain a first
understanding of the context; during that process some
first main ideas and trends emerged. This also enabled
the subdivision of the text to smaller units and in turn,
keyword, and code framing of the text (Erlingsson &
Brysiewicz, 2017). The aforementioned procedure is
continuous until the code and keyword framing is
sufficient for the purpose of the study, and it was
performed with the NVivo qualitative data analysis
software. Figure 6.1 summarizes the content analysis
procedure.

6.2 Content Analysis and Results

This section presents the key findings from the
stakeholder interviews by discussion topic.

6.2.1 Stakeholder Groups Involved in the Provision of EV
Charging Infrastructure

Identifying the stakeholder groups involved in the
provision of EV charging infrastructure is a very
challenging task, as it includes an immense ecosystem
with multiple entities having a role to play. Despite this
challenge, most of the stakeholders provided a fairly
clear overview of the stakeholder groups involved in the
provision of EV charging infrastructure. Interviewees
identified the main stakeholder groups involved by
categorizing them based on whether they are public and
private contributors, fleet or private vehicle owners and
based on the level of EV charging.

Firstly, public contributors consist of different levels,
namely local (municipals, towns, and counties), state,
regional (networks such as the REV Midwest—the
Regional EV Midwest Coalition) and national levels
with the federal government. According to the inter-
viewees, the role of public agencies leans more towards
the planning side as well as raising awareness and
educating the industry and the general public. Private
entities consist of a large group of non-governmental
organizations, ranging from big firms to the individual
EV owner. Table 6.2 describes a basic classification
approach for the main stakeholder groups involved in
the provision of EV charging infrastructure and their
main role.

In an effort to identify the main stakeholders group
involved based on the level of EV charging, Level 2 and
fast charging are the two categories that dominated the
discussion. For Level 2 charging projects, the main
stakeholder involved is the individual who is going to
host the charging infrastructure. For publicly available
chargers, the municipality is the main stakeholder to
host the charging infrastructure. There are also firms
that choose to install chargers in their parking facilities
for their customers. Finally, there are the individuals
who own an EV and choose to install a charger in their
parking lot. There was also the opinion that not all
Level 2 charging stations require the utilities’ involve-
ment in hosting the charging infrastructure. In terms of
fast charging, strategic partnerships between utilities
and different entities such as the charging site host, the
supplier of the hardware, the installer and designer of
the site are needed to ensure a safe and resilient network
to the general public. Table 6.3 gives a classification for
the main stakeholder groups involved in the provision
of EV charging infrastructure base on the given level of
charging.

Despite the fact that Original Equipment Manu-
facturers (OEMs) and auto dealers do not typically own
and operate chargers, their involvement is critical for
the provision of charging infrastructure via demonstra-
tion events and a good sales experience for prospective
EV owners. At the same time, charging network
providers, companies that are the owners and operators
of public accessible charging infrastructure, are critical
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TABLE 6.2
Main stakeholder groups involved

Public and Private Contributors

Public Sector

Private Sector

Federal government
Regional partnerships
State governments
County governments
City governments
Municipal governments

Non-governmental organizations, ranging from big
firms to individual EV owners

Main Role

Planning side as well as raising awareness and

Deployment and use of EV charging infrastructure

educating the industry and the general public

TABLE 6.3
Main stakeholder groups involved based on the level of charging

Stakeholder Groups Involved in the Provision of EV Charging Infrastructure

Level of Charging

Level 2 Charging

Fast Charging

Charging infrastructure site host

Charging infrastructure site host
Utility companies
Charging infrastructure equipment manufacturers

Installers and designers of the charging infrastructure site

components of the electrification of transportation pro-
cess. Lastly, many interviewees stressed out the impor-
tance of research institutions for conducting research
on multiple adoption related issues of EVs.

6.2.2 Stakeholder Interrelationships

The complexity of the EV ecosystem was recognized
by all the stakeholders. Working with multiple different
vendors and stakeholders is very challenging and a
critical point is that everyone involved should maintain
the focus on the mission, which is the deployment of EV
technology and the charging infrastructure develop-
ment. As the transition to an electrified transporta-
tion system requires incredible amounts of capital and
resources, competitive forces that exist between the
various stakeholders should be blunted and exchanging
knowledge for the advancement of electrification tech-
nologies is becoming a priority.

Another crucial point that interviewees pointed out
is the lack of education and familiarity with EVs and
charging technology. The two most experienced parties
regarding charging infrastructure are typically the
manufacturer of charging equipment and the utilities.
The customer, the site host, and the electrician lack
expertise though, and thus, there are opportunities for
workforce development. The interrelationships between
the different stakeholders also involve the collaboration
between the charger manufacturers and the entity that
owns the land where the charger is to be placed, as well
as interactions with the OEMs. Lastly, the interactions

between the electric utilities and the above-mentioned
stakeholders are crucial for the power needed for the
charging operations. So, those are the interactions
typically on charging infrastructure facility side with the
charging point operator also involved.

It was also supported that charging infrastructure
owners are dependent on the fleet and the private
vehicle owners for the charging demand. Hence, there
should be a close coordination between these stake-
holder groups in terms of understanding where the
demand is, where the charging infrastructure is, and if
policies are in place to help the growth of the network
in a way that is as predictable as possible. In addition,
EV users need the charging infrastructure and pro-
grams from the utilities to understand the pricing policy
and its function. Furthermore, payment systems are an
important aspect for EV users. So, there is a need to
provide better transparency to understand the cost of
energy as a lot of people outside the transportation
electrification ecosystem face difficulties in understand-
ing demand charges, time of use charges, or even their
electricity bill. Multiple stakeholders proposed that
education and coordination with utilities and public
agencies is essential for this purpose. The extent to
which a public policy framework is in place to provide,
all the involved stakeholders, with relevant informa-
tion and whether special rates or incentive program are
available can significantly affect the customer value
proposition. Figure 6.2 shows a diagram of the main
stakeholder interrelationships and Table 6.4 provides
more information about the specific interrelationships.
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TABLE 6.4
Main stakeholder interrelationships and interactions

EV users )

/

Stakeholder Group Interrelationship

Charger manufacturer and OEMs

Charger manufacturer and charging site host
equipment

Charging providers and EV users
that are in place

Utilities and EV users

Public agencies and EV eco-system stakeholders

Collaboration and knowledge exchange regarding EV charging and battery technology
Support and knowledge exchange on the installation and maintenance of EV charging

Understanding of the demand, the location of charging infrastructure and existing policies

Better transparency and understanding of the pricing policy and payment systems
Education and coordination for better communications of public policy frameworks, with

relevant information for special electricity rates or incentives

6.2.3 Business Models

There is a range of business models that can be
applied regarding the deployment of EV charging
infrastructure, each suited to a different objective.
When considering an EV charging business model, it
is important to understand which models will be most
effective for the type or class of vehicles served and the
type of location where the charging station will be
installed. The categorization approaches that the diffe-
rent stakeholders proposed were quite different, but
the majority of them highlighted the different needs
between local, interstate, home and parking lots charg-
ing, between Level 2 and fast charging and between
commercial and privately-owned vehicles. Many of the
aforementioned categorizations are overlapping and
affect each other.

In an effort to propose suitable business models
based on the location of the charging infrastructure,
a distinction between local level and state or even
interstate level is needed. For the local level, private’s
sector involvement is crucial, although there might be
also public involvement. Level 2 charging is the most
common at the local level and stakeholders stated that

the Level 2 charging market is competitive already, with
different options for consumers such as buying or
leasing of charging infrastructure, or even paying a
monthly amount in the electric bill for having a third
party installing a charger. In addition, Level 2 charging
infrastructure is not necessarily owned by utilities, but
operational data is needed in order to inform their
plans and offer a reliable grid at an optimal cost. On the
other hand, fast charging business models are totally
different. The return on investment for potential site
hosts of fast charging infrastructure is not profitable
while at the same time fast charging can drive EV
adoption. The public sector, utilities and charging
network providers are the main stakeholders involved
in fast charging at a local level as well as at the state and
interstate level with multiple locations such as rest areas
or gas stations being candidate locations for placing
fast charging infrastructure.

The distinction between commercial fleets and
privately-owned vehicles is another important categor-
ization that affects the business models and is also
closely related with the distinction between publicly
accessible and private charging infrastructure. In the
commercial fleet space, multiple business models can be
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applied. In particular, there are truck fleets that only
own tractors and do not own trailers or there are fleets
that only own trailers; so, the complexity and the
difficulty to propose an appropriate business model is
high. As we move forward into transportation elec-
trification, there are some companies that are imple-
menting new business models where they buy the truck,
and they take over the charging. However, uncertainties
and the amount of investment needed are high, creating
a challenging environment for electric heavy-duty
vehicles. In addition to the aforementioned concerns,
it is a very common practice for a commercial fleet to
develop private charging infrastructure, without public
access. In this case, the business model is straightfor-
ward, as those organizations buy or lease the equip-
ment, or perhaps use charging as a service, which
involves a monthly subscription fee for the use of
charging infrastructure without paying all the upfront
costs of equipment, installation, and permitting. For
privately-owned vehicles, the appropriate business
models are different of those mentioned for the com-
mercial fleet space, as they need mainly a publicly
accessible charging infrastructure network which is
strategically located to provide services for short
commuting trips as well as long distance traveling.

The funding of charging infrastructure was quite a
controversial subject and although different perspectives
were heard, almost all stakeholders believe that the
public sector is not solely responsible for the provision
of charging infrastructure. At the same time, public
fast charging businesses may not be financially feasible
at low utilization rates. As this consists of an enormous
adoption barrier, government has definitely a role to
play by providing direct incentives, that might not be a
long-term sustainable solution, or by electrifying pub-
lic’s sector fleet, a strategy that would offer great
adoption and economies of scale opportunities. Opera-
tion and deployment of charging infrastructure is not an
industry that OEMs are willing to get involved. Never-
theless, OEMs can take part in managing home charging
by making the battery an asset for the vehicle owner and
the grid, something that would allow vehicle owners to
understand when they should charge and when they
should discharge.

In general, multiple stakeholders mentioned some
advanced business models of interest that can be
advantageous for the acceleration of EV adoption.
A public private partnership is where the private sector
sees potential revenue stream, as indicated both during
the interviews and in the pre-survey by the 68% of
participants and could be beneficial for the public that
is using the charging infrastructure. Another innovative
business model is the charging as a service through
which the initial capital cost of the charging infra-
structure and the purchase cost difference between an
EV and an internal combustion vehicle can reduce. In
addition, payments for the use of charging infrastruc-
ture based either on how often, or how long a fleet is
using a given charging network, or a kilowatt hour
basis or even a per mile basis are applicable business

models. The regulatory environment within which the
utilities operate is crucial for the feasibility and the
applicability of business models, as legislation drives
the adoption and the deployment of EVs.

Finally, some important concerns were about the
fairness among different paying systems for charging
services. A kilowatt hour basis payment system is
questionable, as battery’s behavior and consumption
are based on the environmental temperature, on the
vehicle’s model and on the utilities infrastructure and
it can be an unfair business model for the end user.
Additionally, most interviewees also mentioned the
value of EV as a grid asset and highlighted that all
business models have to take that into account and try
to maximize those benefits. Figure 6.3 provides an
overview of the main points discussed regarding
business models.

6.2.4 Level of Charging Availability and Accessibility

Stakeholders’ positions with respect to the level of
charging availability and accessibility were controver-
sial. While some of them pointed out that the current
state of charging infrastructure availability and acces-
sibility is limited, others supported that, with the
current EV adoption rates, the available charging
infrastructure 1is satisfactory, mainly referring to
home/private charging.

It was supported that the charging availability and
accessibility depends on the location of the area under
review, as there are differences between urban and rural
environments. In an urban setting, with the demand for
charging being relatively high, the charging network
most of the times is satisfactory and provides both fast
charging as well as Level 2 charging, with the latter
being the most common option. Indianapolis was used,
multiple times, as a good case study of an urban envi-
ronment within Indiana that has satisfactory charging
coverage. In terms of home charging in urban environ-
ments, availability and accessibility issues may arise for
apartments buildings or multi-unit residential com-
plexes, as the adoption of EVs rises, and the develop-
ment of guidelines and policy for those kinds of projects
in order to promote charging infrastructure installation
should be a priority. In addition, the importance of
workplace charging infrastructure was stressed out as a
driver of EV adoption.

For rural settings, publicly available charging infra-
structure is very scarce and EVs’ refueling is mainly
supported by home charging. The level of charging
availability and accessibility in rural areas also affects
minor and principal arterials, where infrastructure is
scarce. Interviewees mentioned that the majority of fast
charging infrastructure within Indiana is currently
located in urban areas, which poses barriers for long
mileage and interstate trips. Range anxiety concerns
of EV consumers cannot be overcome unless fast
charging is not available along minor and principal
arterials.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/12 51



Level 2 charging is the most common solution at the local level. Level 2 charging
infrastructure is not necessarily owned by utilities, but operational data is needed to inform
their plans and offer a reliable grid at an optimal cost.

Operation and deployment of charging
infrastructure is not an industry that
OEMs are willing to get involved.

Utilities, public sector and e
charging network providers are [
the main stakeholders involved
in fast charging. - ]

Private involvement is essential for the
provision of charging infrastructure.

Figure 6.3 Overview of main business models discussed.

Commercial fleets have different operational char-
acteristics compared to privately-owned vehicles and
the level of charging availability and accessibility for
this type of vehicles has specific features. With the
long-haul trucks, there is limited to non-existent
charging infrastructure. This is not surprising as the
technology of electric trucks is not in the maturity level
of light duty vehicles. The level of charging availability
and accessibility for systems such as transit buses or
port operations is different compared to long-haul
trucks that need infrastructure along the long routes
that they cover. Hence, charging infrastructure for bus
transit systems or port operations is directly connected
with the availability of space where they could develop
charging facilities for their fleets. The acquisition of
land for those purposes as adoption rates increase is
going to be a really challenging task in the near future,
as expressed by multiple stakeholders.

To conclude, a high level of understanding of the
charging network is critical together with studying the
accessibility of charging locations. A robust dataset of
charging infrastructure points is necessary for commu-
nication purposes and from a public policy standpoint.
EV drivers and prospective buyers of EVs should have
a good understanding of the location, type, and func-
tion of charging infrastructure, while public policy can
be a central contributor by setting targets based on EV
registrations and available charging infrastructure.
Finally, some stakeholders mentioned the effectiveness
of charging infrastructure to promote EV adoption and
some equity concerns for charging infrastructure
projects development. The spatial allocation and the
population demographics of charging infrastructure
projects sites were the main equity concerns mentioned
by the stakeholders.

Public sector can offer direct or indirect
incentives, especially for fast charging which
may not be financially feasible at low
utilization rates.

As the complexity of an appropriate
business model for commercial fleets is
high as they operate in a unique way,
they mainly rely on private charging
infrastructure.

Gl Charging as a service with payments
for the use of charging infrastructure
is an alternative business model.

6.2.5 Vehicle Class or Type with Future High Adoption
Rates

Stakeholders’ statements regarding the vehicle class
or type that can have the highest potential for
electrification were homogeneous. In general, they
recognized the fact that until today the development
and the adoption of EV technology had mainly been
concentrated on the light duty/privately-owned vehi-
cles, and especially in the higher cost vehicles. Used car
market could also directly affect future adoption rates
of different vehicle types or classes with the way it will
operate and the transition process to EVs. At the same
time, there are some major opportunities for specific
vehicles classes, and they formulated these patterns in a
quite similar way. All the insights for the vehicles class
or type with future high adoption rates were not related
to the light duty/privately-owned vehicles, as they have
passed the early adoption phase.

The most promising vehicle type for future high
adoption rates is the transit bus. Most interviewees
claimed that transit agency fleets are probably the most
suitable and ready to pursue vehicle class as a result of
both operational and financial attributes. From an
operational standpoint, transit agencies network consists
of predictable routes where ranging anxiety is not a
barrier and where EV charging infrastructure is located in
particular facilities, ensuring charging station reliability.
From a financial standpoint, the subsidies and funding
programs that are in place from the central government
as well as the lower maintenance costs that battery EVs
seem to have create a viable total cost of ownership.
Except from transit buses, school buses and some termi-
nal or port applications were also vehicle classes that have
high potential for electrification for the same reasons.
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Figure 6.4 Vehicle class or type with high adoption rates in the future.

Transportation electrification in the commercial
sector is still in its infancy but interviewees were
optimistic that great progress will happen in the future.
Small freight vehicles or delivery vans are going to be
electrified sooner because their trips are characterized
by predictable routes and high average idling which
can be eliminated though electrification. As opposed to
the aforementioned vehicles classes, there was intense
skepticism around the heavy duty or long-haul appli-
cations and their abilities for viable electrification goals
in the long run. Figure 6.4 summarizes stakeholders’
perspectives regarding the vehicle class or type with
high adoption rates in the future based on their res-
ponses in the pre-survey.

6.2.6 Transportation Funding Concerns

The majority of the stakeholders expressed major
concerns about the impact of EV adoption on the
fuel tax revenue. It was supported by a few stake-
holders though that these concerns are not high yet
because of the lower current EV adoption rates and
thus, policy makers may have the time to adapt
and develop. In general, the need for a recovery
strategy of the lost fuel tax revenue was clear and the
majority of interviewees recognized that EVs should
pay their fair share for using the highway infrastruc-
ture.

First, imposing registration fees for EVs to cover the
revenue loss is considered a common approach to
generate revenue. Most stakeholders expressed that the
registration fee for an EV is too high and certain
adjustments may be necessary for the specific policy
approach or even a new approach to promote equity.

More than one innovative alternative approaches
were proposed as sources for a future transportation
funding plan. The first revenue recovery method pro-
posed is a motor fuel tax as a gasoline gallon equivalent
that is based on a fee per kilowatt hour. Such approach
provides a rate-based method that is consistent with
how the fuel taxes are currently administered but it does
require input data of the energy that is being used for

charging, policy changes as well as the creation of new
standards. Taxation during charging is viable but the
multiples ways of charging create some difficulties.
Home charging is really difficult to be tracked and the
public may not be willing to pay a state tax for charging
at home. Similarly, taxation during workplace charging
would also be hard and given that charging is free at
some work or public places and thus, there is not a real
transaction, this approach becomes even more difficult.
Except for the tracking challenges that this approach
encloses, there are also privacy concerns and need for
very expensive equipment installation. Finally, some
major concerns were expressed by interviewees for the
fairness of a fee per kilowatt hour, as different vehicles
are consuming different amounts of electricity and
electricity consumption also depends on the driving
environment (e.g., urban and highway). The second
revenue recovery method proposed was the VMT fee
which does create an accurate tax based on vehicle
usage. Although it was argued as the fairest approach,
it requires a shift in public and policy thinking and new
methods for measuring the VMT with privacy concerns
again being a major barrier for its implementation.
Figure 6.5 summarizes the potential of different tax/fee
revenue structures to address the potential for decreas-
ing tax revenue as the transportation system migrates
toward EV technologies, based on the pre-survey data.

In conclusion, stakeholders highlighted the impor-
tance of a realistic and fair plan for the lost fuel tax
revenue as the transportation system migrates toward
EV technologies. Policy makers should be careful with
the timeline of the alternative approaches since if
owning an EV is more expensive than owning an
internal combustion engine vehicle, the adoption curve
will be negatively affected. Implementing an annual fee,
a monthly fee, a VMT fee, or a pay-as-you-charge fee is
crucial as today the gas purchase is spread over once a
week or twice a week. More progressive approaches of
making up for the fuel tax revenue loss such as
increasing gas fuel taxes as EV adoption increases or
implementing more expensive tolls for internal combus-
tion vehicles were also heard.
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Figure 6.5 Potential revenue generation of different tax/fee structures.

6.2.7 Grid Impact and Renewable Energy Integration

Stakeholders recognized that the electrification of
transportation will definitely affect the grid, but with
the current adoption rates, there is no need for major
grid updates. So, as adoption increases, the stress on the
grid will become higher and grid innovation technolo-
gies will be developed. In this context, the importance
of close collaboration between utility companies and
the public sector was pointed out.

Commercial fleet electrification was the main area for
which stakeholders expressed concerns regarding future
needs on the grid level. When the demand for fleet
charging emerges, utilities and policy makers should have
plan ahead and be ready to provide services. Develop-
ment and upgrades of the transmission and distribution
network would be essential, as the reliability of the
electrical grid would become one of the most important
factors for the deployment of EVs. Charging reliability
and resilience are critical from an operational standpoint
because the whole transportation system operation is
based on the electrical grid for refueling.

Grid management would also be of high priority as
EV adoption increases. Supply and demand is expected
to be shifted from today’s patterns and it is possible to
see high demand during traditionally off-peak hours.
Technologies like vehicle to grid (V2G), on-site gene-
ration, on-site energy storage, would render the vehicle
as a grid asset. Energy storage was reported as one of
the most critical features that the grid should have for a
successful electrification process since it can mitigate
the impact to the grid. In addition, programs that shift
the charging time and encourage customers to charge
during periods of low demand (off-peak) are necessary
to reduce grid stress.

Lastly, the shift of electricity production to renew-
able energy sources is fundamental. Utility companies
are developing their integrated plans for renewable
energy projects and increase the renewable energy of
their mixes. Environmental concerns of public opinion
have to be considered and develop a holistic approach

where pollution is not just moved out of the cities to the
electricity production areas. Finally, renewable energy
sources are part of the overall reliability of the grid, and
energy storage capabilities are again an integral part of
the system.

6.3 Summary

The EV ecosystem involves a wide range of
stakeholders involved in the electrification of transpor-
tation process and the understanding of their needs and
perspectives is crucial for the provision of EV charging
infrastructure. In this study, a content analysis was
performed for the data collected by interviews and
seven main ideas emerged from the analysis. Stake-
holders used different categorization approaches for
identifying the main stakeholder groups involved in the
provision of EV charging infrastructure, for proposing
business models, and for the level of charging avail-
ability and accessibility. Additionally, stakeholders
specified the vehicle classes with future high adoption
rates and identified concerns about the impact of EVs
on the highway revenue and the electrical grid. Among
other findings, it was noted that stakeholder partner-
ships and appropriate business models may depend on
various factors including the type of charging (private
vs. public or Level 2 vs. fast charging), the location
(local, state, or regional level) and the vehicle type
(commercial fleets vs. privately-owned vehicles).

7. CONCLUSIONS
7.1 Summary of Key Findings and Deliverables

The objective of this study was to identify opportu-
nities for the strategic deployment of EV charging
stations, to estimate the funding needs and revenue
generation outcomes regarding EVs, and to examine
major stakeholder perspectives on strategic partner-
ships towards EV preparedness. The study consisted of
different tasks and sub-objectives; the study main
findings are discussed in this section.
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The research team developed an agent-based simula-
tion model for long-distance EV trips and spatial
analysis for high energy consumption areas in Indiana.
This research focused only on long-distance EV trips in
Indiana and demonstrated the EV long distance trips
and energy demand to identify locations where INDOT
can take next steps for further analysis. This study
conducted the spatial analysis upon the strategy of
deploying potential EV charging stations, and the
analysis consisted of two parts: (1) developing a simu-
lation model to identify EVs’ demand and frequency of
charging based on ten pre-determined scenarios and (2)
GIS-integrated spatial analysis for EV infrastructure
deficit areas and potential EV charging stations
deployment. Marion and Hendricks Counties were
identified as the top two counties where many EV long-
distance trips may be interrupted due to running out of
energy. Other areas include Morgan, Johnson,
Madison, Bartholomew, Hamilton, Marshall, Boone,
Grant, LaPorte, Cass, White, Shelby, Huntington,
Putnam, Decatur, and Owen as potentially charging
deserts in the future. The study outcomes also provide
the geographical magnitude of the EV energy demand
defined by the ISTDM regions. The Greater Indy area
is potentially the most EV energy required region,
followed by SR-46 Corridor, SIDC, and NCIRPC
among the 17 ISTDM regions. The visualized results of
EV energy demands based on EV long-distance trip
failure analyses are provided in the appendices.

Next, the study aimed to enhance the revenue
structure by assessing the funding needs, identifying
the optimal EV fee based on scenarios of EV market
penetration levels and by evaluating the potential of
funding mechanisms to recover the revenue loss. The
optimal annual EV fee per vehicle class (recovery EV
fee) that is needed to recoup the fuel tax revenue loss
was estimated. With the use of system dynamics, it was
determined that the net effect of all parameters on the
recovery EV fee is the same, even if different EV market
penetration levels are applied, indicating that the fee
will have the same value for every scenario. To
maintain the same fuel tax revenue per vehicle, annual
fees ranging from $241 (in 2021) to $342 (in 2035) for
automobiles, $344 to $435 for light trucks, $1,246 to
$1,488 for buses, $969 to $1,243 for single-unit trucks,
$6,192 to $7,321 for combination trucks and $26 to $35
for motorcycles would be needed over the analysis
period. The fuel tax revenue loss and impact of EV fees
on revenue from vehicle registrations for Indiana and
INDOT were estimated for the most likely, optimistic
and pessimistic scenarios. In the most likely scenario
(5% EV market penetration level for light duty vehicles
in 2030, 30% for medium and heavy duty vehicles in
2030), the results project that the statewide fuel tax
revenue will decrease by 21% and INDOT fuel tax
revenue will decrease by 24% by 2035, relative to 2030.
Assuming 100% EV market penetration level in 2030,
the statewide cumulative fuel tax revenue loss from
2021 to 2035 is around $50 billion and this corresponds
to around $22 billion cumulative fuel tax revenue loss

for INDOT. The proposed EV recovery fee found for
Indiana can extend revenues collected from INDOT
beyond break-even to yield a surplus, if INDOT
receives 75% and 100% of the EV-fee revenues (for all
scenarios—most likely, optimistic/pessimistic). On the
other hand, the existing EV fees yield a revenue deficit,
even if the revenue distribution to INDOT is 100%.
Alternative ways to implement the estimated recovery
EV fees were also proposed. The recovery EV fee was
converted to a VMT ($/mile) and pay-as-you-charge
($/kWh) fee per vehicle class and per year (Figures 5.16
and 5.17). Potential barriers to the implementations of
these options (e.g., sustainability, costs, privacy con-
cerns) and policy aspects (e.g., implementation process,
partnerships, equity considerations) were examined (see
Table 5.8). Lastly, although EV users may pay
additional charges that can hinder the adoption of
EVs, this is only one aspect of the user total cost of
ownership, since EVs have lower fuel costs, as this
study showed. The results of this task can help state
agencies better understand the impact of EVs on the
highway revenue and serve as a reference to support
decision-making on EV policies.

Finally, this study attempted to gather knowledge on
the main factors related to the promotion of EVs and
evaluate the strategic partnerships and business models.
To achieve these objectives, a pre-survey and semi-
structured interviews were conducted online with 23
stakeholders representing the EV ecosystem. The
interviewees included participants from utilities, policy
makers, automotive industry/manufacturers, charging
equipment/infrastructure providers, non-profit organi-
zations, and other. From the content analysis that was
performed, seven main ideas emerged. Stakeholders
used different categorization approaches for identifying
the main stakeholder groups involved in the provision
of EV charging infrastructure, for proposing business
models and for the level of charging availability and
accessibility. Additionally, stakeholders specified the
vehicle classes with future high adoption rates and
identified concerns about the impact of EVs on the
highway revenue and the electrical grid. Among other
findings, it was noted that stakeholder partnerships and
appropriate business models may depend on various
factors including the type of charging (private vs. public
or Level 2 vs. fast charging), the location (local, state,
or regional level) and the vehicle type (commercial fleets
vs. privately-owned vehicles). Most interviewees sup-
ported that the provision of charging infrastructure
involves mainly private entities, while public sector
provides a critical role by providing direct or indirect
incentives to users, as well planning the charging
infrastructure, raising awareness, and educating all
stakeholders involved. Furthermore, the stakeholders
identified transit buses having the highest potential for
electrification, followed by followed by school buses
and small freight vehicles or delivery vans. Equity
concerns were raised related to the availability of
charging infrastructure in rural areas as well as the
various fees/taxes to be charged per EV to address the
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potential for decreasing fuel tax revenue. A VMT fee
was argued as a fair approach to generating highway
revenue, but privacy concerns were viewed as a major
barrier for its implementation. Lastly, the need for grid
management and renewable energy integration was
pointed out as a high priority as EV adoption increases
and especially, as commercial electric vehicle adoption
increases.

7.2 Recommendations for Implementation and Benefits to
INDOT

Based on the work performed, the following
recommendations for implementation are provided.

® The agent-based simulation model of the study is
developed for future long distance EV trip scenarios in
Indiana and uses unique geographical information and
model parameters for Indiana. This model enables
INDOT to identify EV energy deficient areas for current
and future energy charging demand scenarios and can
support the state’s strategic planning for the EV charging
infrastructure development.

® The results of the revenue impact analysis can inform
INDOT’s revenue model and assist decision makers
establish more reliable plans regarding preparedness for
prospective EV operations in the coming future. The
estimations of the recovery EV fee, the VMT fee and pay-
as-you-charge fee can be used by INDOT in pilot
programs to capture users’ perspectives and willingness-
to-pay and to estimate appropriate fee rates and
structures such that both sufficient revenue is raised,
and public acceptance is achieved.

® The study proposed an EV recovery fee to offset the
revenue loss from gasoline fuel tax. It is anticipated that
the revenues from the EV recovery fee will be split
between the state and the local governments. A state
share of 75% or higher can ensure that INDOT’s
revenues move beyond break-even to a surplus.

® Implementing the recovery EV fee as an annual flat fee
for EVs may generate opposition from the public and
road users, particularly, commercial vehicles. Therefore,
to offset the gasoline revenue loss, a VMT ($/mile) or
pay-as-you-charge ($/kWh) fee may be more appropriate
and equitable. In particular, a VMT fee can be imple-
mented, since it can be easily adjusted based on different
parameters to consider the actual cost caused to the
transportation network and lead to strategic investments
in the transportation infrastructure. To enhance the
fairness of this mechanism further, VMT fee can be
adjusted or combined with weight-based fees and privacy
concerns should be addressed. Additionally, given the
air quality benefits of EVs, more VMT traveled by
EVs should be associated with lower fees compared to
conventional vehicles.

® The implementation of a pay-as-you charge fee can also
be tested as part of a pilot program. A pay-as-you-charge
fee is similar to the pay-at-the pump nature of existing
fuel taxes facilitating its adoption. Nevertheless, it would
be complex to separate the EV electricity usage from the
household usage and partnerships between utilities and
INDOT should be developed to effectively remit pay-
ments associated with EV charging at home.

® Extensive public outreach and education should be

undertaken to inform users about the overall long-term
cost savings associated with EV use. This can help earn
public support. Further, the best of alternative policy
options can be identified through pilot programs. This
study highlights an opportunity to prepare INDOT for
participating in pilot programs on a road usage charge,
following the examples of other states.

The insights obtained from the stakeholder interviews
can be used to enhance preparedness for increasing EV
adoption rates across vehicle classes and strengthen the
engagement of different entities in the provision of
charging infrastructure. The main stakeholder interrela-
tionships that should be considered for the provision of
EV charging infrastructure are the following.

o Collaboration and knowledge exchange regarding EV
charging and battery technology is essential between
the charger manufacturers and the OEMs.

o Interrelationships between charger manufacturers and
charging site host involve the support and knowledge
exchange on the installation and maintenance of EV
charging equipment.

o Coordination between charging providers and EV
users is necessary to understand EV charging demand,
the location of charging infrastructure and existing
policies.

o Better transparency and understanding of the pricing
policy and payment systems are the core of the
interrelationship between utilities and EV users.

o Collaboration between utilities and policy makers is
needed to plan for increasing EV demand (especially
regarding commercial vehicles that have increased
power requirements). The planning process may
consider upgrades of the transmission and distribution
network, grid management technologies such as V2G,
integrated plans for renewable energy projects, new
tariff structures to reward charging behaviors and
investigation of the impacts of EV demand on the
transportation system operation.

o Public agencies’ role focuses on planning, raising
awareness and educating all stakeholders involved.
There should be coordination among these stake-
holders for better communication of public policy
frameworks, with relevant information for special
electricity rates or incentives.

High level understanding of the charging network is
critical together with studying the accessibility of
charging locations. A robust dataset of charging infra-
structure points is necessary for communication purposes
and from a public policy standpoint. EV drivers and
prospective buyers of EVs should have a good under-
standing of the location, type, and function of charging
infrastructure, while public policy can be a central
contributor by setting targets based on EV registrations
and available charging infrastructure.

Transit buses have the highest potential for electrification
due to their operational and financial attributes, followed
by school buses and small freight vehicles. Prioritizing
planning (e.g., incentives, charging infrastructure) for the
successful implementation of EV technology across the
specific vehicle classes is crucial to handle the potential
increased EV demand.
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7.3 Limitations and Recommendations for Future Work

The agent-based simulation model of this study
considered only long-distance trips only, the local
traffic energy demand, and local existing charging
stations are excluded. Additionally, the current model is
based on the ISTDM trip data that may not be able to
accurately reflect the actual EV trips in the future.
Further research is needed to define the baseline data
for the model. Data for the model parameters, such as
energy consumption and discount factors, is insufficient
or does not exist. Future research can work on filling
the gaps in data collection, and validation for the key
model parameters.

Regarding the revenue impact analysis, there are still
certain limitations that could constitute research direc-
tions for future studies. The analysis focused on
estimating the impacts of battery EVs and the following
five main vehicle classes: automobiles, light trucks,
buses, single-unit trucks, combination trucks and
motorcycles. Future research could expand the analysis
by disaggregating the results by weight class which
would be especially interesting for trucks and by
considering hybrid and/or other alternative fuel vehi-
cles. Moreover, this analysis calculated the optimal
recovery EV fee to break-even the fuel tax revenue loss
without explicitly accounting for the equity of funding
mechanisms across the different vehicle classes. Future
research can work on developing effective metrics to
capture this aspect and ascertain an equitable fee
structure. Furthermore, the estimation of the pay-as-
you-charge fee was based on data for the efficiency of
EVs per vehicle class (kWh/mile) and on assumptions
about the improvement of this efficiency. The energy
consumption rate for heavier vehicles in real-world
operations is still uncertain though. With more data in
the future, studies can explore the sensitivity of the
results to variations in the energy consumption rate
parameter due to various factors such as weather or
payload. The research framework used to estimate the
impact of EV adoption on fuel tax revenue and to
estimate the optimal EV fee can also be expanded and
consider how transportation revenue sources can align
with available funds and broader state emission and
electrification goals. Moreover, the study results are
considered preliminary. The actual implementation of
the options proposed will need in-depth studies to
examine both the user perspective and the necessary
procedures for the implementation of EV fees such as
their collection process, appropriate technologies,
administrative costs, and more.

This study gathered knowledge on the main factors
related to the promotion of EVs and evaluated the
strategic partnerships and business models by inter-
viewing representative stakeholders of the EV ecosys-
tem. Future research can work on expanding this study
by interviewing stakeholders from other organizations/
agencies across the Midwest and nationwide as well as
repeat this study to capture the change in stakeholders’
perceptions over time.

Lastly, it is recommended that future research
explores the synergies between the electrified, shared,
automated, and connected mobility in the state. These
revolutions in transportation may be combined in
various ways and are expected to bring transitions in
mobility and revenue losses under the tax structures
that the states have developed. For instance, electric
shared autonomous vehicles may render the fuel tax
obsolete over time; cause induced travel demand and
increase the damage caused on highway infrastructure;
decrease vehicle ownership and registration fees; as well
as eliminate other types of fees such as parking fees
(Fox, 2020; Ha et al., 2020; Ratner, 2018). Additionally,
it is recognized that connected and autonomous
vehicles will be most likely to be propelled by electricity,
and as such, additional EV infrastructure (charging
stations and guideways) will be needed to support their
operations.
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APPENDIX A. LITERATURE REVIEW
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the US Midwest,
connecting Chicago,
Indianapolis, St.
Louis and Nashville
and 2 distribution
Centers

(2018-2028)

Heavy duty vehicles

fleet vehicle purchasing

behavior:
-A mixed-integer linear
program formulation:
projecting adoption of
emerging powertrains
(natural gas, battery
electric, and hydrogen
fuel cells)
-A simulation approach:
capability to provide
insights on how the
introduction of
emerging technologies
to the line-haul market

Route characteristics (e.g., links,
nodes)

Route restrictions

Vehicles on route (for 12 line-haul
fleets)

Freight demand

Vehicle well to well emissions
Route speed

Energy consumption and efficiency
Purchasing and operating costs
Energy costs

Taxes and incentives/policies

National Research
Council

Federal Motor Carrier
Safety Administration
U.S. EIA

U.S. EPA

Other research
environmental studies
and studies related to
purchase costs,
efficiency, range and
payload capacity

2028 period. Battery electric heavy-
duty vehicles reach around 2% in
2028

Incentives are the primary factor
influencing adoption of EVs. On-
road charging as the range-
extending mode for electric
vehicles appears to have a negative
effect on battery EV vehicle
adoption particularly when
compared to the cases where
battery swap stations are available
Decreasing the battery vehicle
payload capacity from 25 tons to 22
tons-3 tons lower than the diesel
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will impact the
utilization of freight
vehicles and allocation
over transportation
routes (powertrain
adoption scenario)
Sensitivity evaluation of
projected adoption trends
and resulting CO2 emissions
to variation of vehicle,
policy, and infrastructure
design parameters.
Years of forecasting:
2018-2028

vehicle payload capacity-causes a
decrease of approximately 100
BEV purchases

Potential reduction of
approximately 20% in cumulative
emissions given a widespread
adoption of natural gas, battery
electric, and hydrogen fuel cell
vehicles

Lee et al., California Latent class model to Respondents' sociodemographic Multiple cross- « Four heterogeneous clusters of
2019 classify EV buyers based on characteristics sectional questionnaire early adopters of EVs: 49% are
(2013-2018) socio-demographic Latent classes (used as inputs in surveys (data from EV high income families, 26%
characteristics Bass diffusion model) buyers in California mid/high income old families, 20%
Light duty vehicles Bass diffusion model using EV sales data from 2013-2018) mid/high income young families,
latent classes as inputs. Market limits for different and about 5% are middle income
Ordinary least squares sociodemographic clusters California Clean renters
method used to estimate the Vehicle Rebate Project | « High income families decrease to
coefficient of imitation that 40.5% in 2017. Mid/high income
best predicts the following National Household old families remained between
years’ actual sales Travel Survey 22.7% in 2015 and 30.5% in 2017
Years of forecasting: California add-on Mid/high-income young families
2018-2030 2017 data and middle-income renters reached
around 24% and 9%, respectively,
in 2017
o High-income families, Mid/high
income old families, mid/high-
income young families and middle-
income renters reach around
97%,45%, 80% and 25% in 2030.
Oucetal., China New Energy and Oil Vehicle weight Chinese vehicle « Predicts 2020 PEV sales will be
2020 Consumption Credits EV range market info from the about 8.81% of passenger vehicle
Light duty vehicles (NEOCC) Vehicle price China Automotive market

Uses nested logit function to
calculate market shares of 18
vehicle types (ICEV, PHEV,
BEV) purchased by personal
vehicle drivers and public
fleet drivers

Fuel consumption (ICEV and
PHEV)

Electricity consumption (PHEV,
BEV)

Technology and
Research Center

Finds that public charging has
higher impact on vehicle diffusion
in an emerging EV market than a
mature market

EV commercial LDV fleet growth
highly correlated to number of fast
chargers
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e Uses a genetic algorithm to

optimize a market dynamics
function
Probability of choosing a
vehicle depends on:
- Total cost of ownership
- Income (value of time)
- personal consumer
preference
Total cost of charging
activities combines:
- Electricity charging
cost (at home, at
workplace, at public
chargers)
- Charging
inconvenience cost
- Range anxiety cost
Allows a systematic
assessment of charging infra
impact on PEV ownership
cost and market share
Year of forecasting: 2020

« More home parking spaces
stimulates more PHEV sales than
BEV

- Authors note that this is most
likely due to cultural and
population density differences
between the US and China;
they expect the opposite would
hold true in the US
* Decreasing battery cost has a
stronger effect on increasing sales
than increasing public charging has
on increasing sales for 2020

Santa-
Eulalia et
al., 2011

Germany
(2009)

Light duty vehicles:
cars

Model structure: Discrete
choice model combined with
Bass diffusion model to find
buying probability
estimation

Model parametrization:
Conjoint experiment to find
utility functions for each
product attribute

Years of forecasting:
2009-2020

e Consumer preferences for 18
attributes that differentiate an EV
from a conventional vehicle

e Adopter categories

o Utility functions

Interviews and semi-
structured
questionnaires

Market for EVs accounts for 63%
in 2009

If no fast charging infrastructure is
available, consumers are not
willing to purchase the electric car
Restrictions imposed by limited
charging possibilities and the long
loading time led to a less than 0.1%
market share

Fast charging leads to a market
share of 14% in 15 years. If battery
exchange stations are available,
18% of the potential market is
achieved




Wolinetz &
Axsen, 2016

British Columbia,
Canada

(2015)

Light duty vehicles

REspondent-based
Preference and Constraint
(REPAC) model:

Discrete choice model:
probability that each
respondent will choose each
vehicle drivetrain type
(conventional, hybrid, plug-
in hybrid or battery EV)
Vehicle model: costs and
characteristics of vehicles to
be chosen (compact, sedan,
small, and large
SUV/Van/Truck)
Constraints model: three
factors preventing the
unconstrained demand of
each respondent from being
realized as sales: lack of
familiarity with EVs, lack of
EV supply and lack of home
recharge access

3 policy scenarios: no policy,
demand-focused policies,
supply-focused policies
Years of forecasting:
2015-2030

e Survey data: home charging access,

EV familiarity, consumer
preferences for vehicle attributes,
weekly travel by respondent

e EV battery and vehicle components

costs

e Gasoline and electricity prices

Canadian Plug-in
Electric Vehicles
Study

U.S. DOE

National Energy Board
of Canada

No-policy simulation for annual
EV sales is 7% new market share
by 2030

Results are most sensitive to home
charging, consumer learning and
supply parameters

2030 simulations range from 17 to
28% with strong demand-focused
EV policies in place

Strong supply-focused policy is
also required to achieve 2030
market shares over 30%
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Table A.2 List of tools forecasting EV demand

network simulation
-Electric grid
distribution network
simulation

electric grid. The foundation of the
Caldera software platform is a
library of high-fidelity EV
charging models derived from

o Charging model library (high
fidelity charging models for AC
level 1/2 and DC fast/extreme fast
charging)

Model name & Developer &
General description Scale Input Output
Methodology References
ADOPT National Automotive Deployment Options State, county « Technology improvements over « Vehicle sales by every model
Renewable Projection Tool (ADOPT) is a light | or zip code time and powertrain
Energy duty vehicle consumer choice and « Fueling station availability
« Mixed multinomial Laboratory stock model. ADOPT estimates « Fuel prices over time
logit vehicle technology improvement « Vehicle purchase incentives over
impacts on future US light duty time
vehicle sales, energy use, and « Vehicle attributes (price, fuel cost
NREL (n.d.b.) | emissions. per mile, acceleration, size, range)
« Consumers' income level
Brooker et al. « VMT
(2015) « Penetration rates
« Regulations and standards
BEAM Lawrence BEAM Model stands for Behavior, | Metropolitan o Mobility and charging data: o EV trip and charging demand
Berkeley Energy, Autonomy, and Mobility. region « Population of area/number of and behavior
National It is an agent-based agents « Behavior/trips by agents in
« Nested multinomial Laboratory microsimulation model used to « Traffic flows and travel times different modes (car, public
logit simulate plug-in EV mobility, « EV ownership data transit, walking, bike, or
« Agent-based energy consumption, and « EV attributes (e.g., make/model shared or networked mobility
simulation spatiotemporal charging demand. year, battery capacity, state of services)
Lawrence charge etc.) o Energy impacts of changing
Berkeley « Spatial distribution and mobility trends/energy
National characteristics of charging consumption
Laboratory infrastructure
(n.d,) « Utility functions/stated preference
data
Sheppard et al.
(2017)
Caldera Idaho National | Electric Vehicle Charging Regional/ « Vehicle module (vehicle travel « Estimates of:
Lab Simulation Platform Caldera links Transportation demand forecasts, charging -Charging power profiles
grid and transportation network to and electric decision agent) - Efficiency and power factors
o Agent-based optimize charging. It is used to grid « Infrastructure module (charging for different vehicle types
simulation: develop strategies for managing distribution demand forecasts, infrastructure -Charging technologies
-Transportation INL (n.d.) charging and impacts on the network decision agent) -Grid impact of EV charging

demand




extensive charging and battery
testing data.

o Charging control module (AC

Level 2 smart charging strategies,
extreme fast charging station
control strategies)

Compass LMC This model focuses on EV market Global, « Hybrid and Electric Vehicle sales « For over 30 OEMS and 70
Automotive analysis and outlook, including regional and and production data for different brands for commercial
model activity and sales trends for | national brands and models vehicles and for 40 OEMs,
« Data driven approach electrification types (battery 250 brands and 2,300 models
(Interactive tool) electric vehicle through fuel cell, for light duty vehicles:
LMC plug-in hybrid to mild hybrid with -Production volume forecasts
Automotive 48V). -Sales forecasts
(n.d.) -Powertrain forecasts
(12 years forecast horizon for
light duty vehicle sales and
7 years forecast horizon for
commercial vehicle sales)
EV Hub ATLAS Public | EV hub is an online platform that Global « User inputs vary depending on the o EV sales forecast
Policy equips stakeholders with key tool. ¢ EVs on the road
information on the EV market. It National « Tool for EV market forecast: » Forecast summary (report,
o Data-driven provides access to data about the « Report to derive data (e.g., Global publish date and source, link,
(Interactive tool) transportation electrification State Annual Outlook) and comments)
EV Hub (n.d.) | market (vehicle registrations, « Vehicle type
infrastructure deployment, public Local o Year (2020-2040)
policies, research, public and « Forecast country
private funding opportunities, and « Forecast entity
media coverage). It can consider
light-, medium, heavy duty
vehicles.
LAVE-Trans Oak Ridge Light Duty Alternative Vehicle -States that « Vehicle and fuel attributes « Vehicle market share, sales,
National Energy Transitions (LAVE-Trans) | have adopted « Infrastructure energy use and emissions
Laboratory model is a consumer choice model | the California « Consumer behavior assumptions o Costs & benefits of the
« Nested multinomial and transition costs/benefits vehicle « Policies transition
logit analysis tool. Its objective is to standards o Optimal transition
better understand the role of « Strategies
Greene et al. vehicle technologies in the energy -National

(2014)

Liu & Greene
(2014)

transition and to examine the
barriers to and dynamics of
transitions to advanced vehicle
technologies and alternative fuels
(hybrid, plug-in hybrid, battery

A-8




National
Research
Council (2013)

electric and fuel cell vehicles)
under different policy scenarios.

LVCFlex Energetics Inc. | This model estimates future market | National « Vehicle Price « Estimates of future sales
penetration of advanced or « Vehicle sales specified by user for shares (2007-2050) by
alternative vehicle technologies each size class (for base case) drivetrain technology

« Nested multinomial based on vehicle and fuel « Fuel cost per mile

logit Birky (2015) attributes, including price. The « Range
model calculates market shares « Battery Replacement cost
TA separately within five vehicle size o Acceleration
Engineering, classes at annual time steps from o Home refueling capability
Inc. (2012) 2007 through 2050: small cars, « Maintenance cost
large cars, small sport utility « Luggage space
vehicles (SUVs), large SUVs, and « Fuel availability coefficient
pickups (battery electric, plug-in « Make/model Availability
hybrid, hybrid, gasoline, turbo « Calibration coefficient
direct diesel, ethanol, compressed
natural gas, hydrogen fuel cell).
MA3T Oak Ridge MAZ3T estimates future market National « Technology attributes « Vehicle sales by powertrain
National shares and sales of 40 given « Consumer preferences type, consumer segment
Laboratory powertrain technologies (gasoline, Census « Infrastructure availability (Innovation Diffusion
o Nested multinomial diesel, battery electric, hybrid, fuel | divisions « Energy prices Theory), and year.
logit cell and other subcategories), « Policies « Vehicle population by
separately for passenger cars and « Choice probabilities of each vehicle powertrain type and year
Linetal (nd.) | light trucks and under user-defined technology for each market « Tailpipe and well to wheel
scenarios of demand in response to segment GHG emissions by year
changes in technologies, « Consumption of gasoline,
infrastructure, energy prices, diesel, electricity, hydrogen
consumer preferences, and policies. and natural gas by year
« Government expenditure on
vehicle subsidies by year
« Consumer surplus by year
National Energy US Energy The transportation sector demand National « New car fuel economy o Market shares for 14
Information module is designed to achieve the « Vehicle price alternative-fuel technologies

Modeling System Administration | following objectives: Census ¢ Vehicle range as well as for conventional

(NEMS) (Consumer divisions « Fuel availability gasoline and diesel

Vehicle Choice -Generate projections of « Battery replacement cost technologies.

Component Tool)

EIA (2019b)

transportation energy demand at

« Vehicle performance
« Home refueling capability
» Maintenance costs
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o Nested multinomial
logit

the national and the Census
Division level.

-Endogenously incorporate the

effects of technological innovation,

macroeconomic feedback,
infrastructure constraints, and
vehicle choice in making the
projections.

« Luggage space

« Make and model diversity or
availability

« Fuel price estimates

ParaChoice Sandia ParaChoice model is a systems State « Fuel cost « Estimates of future sales
National level economic analysis to model « Vehicle sales shares by powertrains
Laboratories dynamic feedback between fuels, « Range penalty: value of time times technology (battery electric,
vehicles, and infrastructure up to time spent refueling hybrid, bi-fuel, fuel cell and
o Nested multinomial 2050. Its main goals are to « Vehicle price, size, made, number other subcategories of the
logit understand uncertainty in vehicle « Policies previous)
Levinson & choice model and projections; « Driver demographic and travel
West (2015) understand changes to the light characteristics « Factors affecting sales
duty vehicle stock, fuel use, and (sensitivity to gasoline prices,
Manley et al. emissions and determine the refueling infrastructure,
(2015) impact of additional EV battery costs and other
infrastructure on EV adoption and variables)
use.
PEV Roadmap Fosterra, LLC. | PEV roadmap is an EV forecast City o Years of forecasting o Annually:
tool intended to provide the latest e Zipcode e EV counts
data, insight, and program-related County o Growth rate « EV growth projections
information to decision makers at « EV supply equipment to EV ratio « Projected outlets needed
« Data driven approach | Fosterra (n.d.) | local agencies and utilities. Zipcode « Projected energy consumption
(interactive tool) o EV miles traveled
« Avoided gasoline consumption
and avoided CO, emissions
POLARIS Argonne Planning and Operations Language | Regional/ « Highway networks o Travel demand/Network load
National for Agent-based Regional Transportation | e Travel, transportation, or traffic per hour or vehicle hours
Laboratory Integrated Simulation (POLARIS) | network analysis zones traveled for a new
is a high-performance, open-source « Spatial data (land use/demographic/ transportation system
« Agent-based agent-based modeling and activity- socio-economic/GPS based travel « Activity type distribution per
simulation based travel demand framework (a surveys) unit of time
« Activity-based travel | Argonne set of libraries) designed for « Urban transportation, safety, travel | o Energy use
demand model National simulating large-scale behavior, traffic monitoring, travel
« Simulation-based Laboratory transportation systems. It is time and speed data
dynamic traffic (n.d.). integrated with powertrain

assignment model
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Auld et al.

simulator Autonomie to perform

(2016) regional energy use analysis.
SERA National Scenario Evaluation and Regional « Total vehicle sales (new vehicles « Vehicle stock: total vehicles
Renewable Regionalization Analysis (SERA) sold) on the road by region, vehicle
Energy is an extensive systems analysis State « Market share (% of vehicles sold fuel type, and year
Laboratory model that considers both market per year) « Early-adopter locations for
« Data driven-Sub- factors and technology factors to « Vehicle use (miles driven annually alternative powertrain vehicles
models: design transportation infrastructure per vehicle type) « Infrastructure costs and
-Scenario generation from a city-scale up to a national « Vehicle survival (% of vehicles financing
-Vehicle choice Bush et al. road map. It can consider light-, surviving to the next year « Fuel consumption: total fuel
-Vehicle stock (2013) medium- and heavy duty vehicles. « Fuel split in each vehicle type used by region, vehicle type,
-Infrastructure cost « Fuel efficiency for each vehicle and year.
(cash flows) Bush et al. type « Fuel economy: travel-
-Intra-regional (2019) weighted-average fuel
refueling-station economy by region, vehicle
placement NREL (n.d.a) type, and year.
(optimization)

-Inter-regional
production and
delivery optimization
(simulated-annealing
and greedy
algorithms)
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APPENDIX B. SPATIAL ANALYSIS AND GUIDANCE FOR STRATEGIC DEPLOYMENT OF
EV CHARGING INFRASTRUCTURE

Table B.1 Count of stop markers in every county for all ten scenarios

County Count of Stop Markers among Counties in All Scenarios
County ID | Name 1 2 3 4 5 6 7 8 9 10
1 Blackford 0 0 1 2 2 6 0 5 5 57
2 Union 0 0 0 0 0 0 0 2 0 21
3 Ohio 2 1 0 1 0 1 1 1 4 53
4 Floyd 2 4 6 2 5 9 5 12 9 374
5 Fayette 0 0 0 0 0 2 0 1 2 41
6 Tipton 6 7 9 4 14 18 8 13 20 471
7 Steuben 1 1 0 0 2 1 2 2 1 60
8 Johnson 17 29 49 26 91 118 56 118 189 1,175
9 Brown 1 9 14 8 22 19 9 19 38 368
10 Switzerland 0 1 1 1 2 1 0 5 4 104
11 Hancock 6 12 21 12 42 56 19 60 79 1,181
12 Scott 3 9 11 6 17 27 13 30 45 337
13 Dekalb 2 0 2 1 4 2 3 8 9 404
14 Adams 1 1 4 0 4 4 2 2 6 104
15 Starke 3 9 12 9 12 21 11 21 27 709
16 Whitley 5 6 5 8 11 20 9 23 36 598
17 Decatur 12 11 11 9 20 30 20 32 52 798
18 Howard 2 2 7 2 9 16 4 6 18 378
19 Delaware 5 9 17 15 29 41 19 39 72 1,274
20 Jay 1 2 2 5 5 3 5 11 210
21 Lagrange 0 0 1 0 1 0 1 0 2 204
22 Hamilton 11 34 45 36 66 96 52 128 199 1,704
23 Huntington 12 27 43 33 54 100 33 88 147 686
24 Orange 8 9 18 13 25 32 8 36 55 653
25 Benton 2 5 4 5 7 14 5 13 24 165
26 Martin 10 14 21 13 31 57 25 55 88 795
27 Rush 0 4 10 2 8 10 4 8 25 473
28 Marion 31 66 119 75 164 233 126 224 355 3,371
29 Grant 11 37 42 26 72 107 49 106 134 405
30 Henry 0 1 2 2 8 4 1 10 7 516
31 Shelby 9 20 33 28 63 85 33 89 145 1,296
32 Clinton 6 14 19 11 20 52 19 36 61 926
33 Vanderburgh 0 1 1 4 5 5 6 6 16 314
34 Boone 18 27 47 35 65 96 52 102 165 1,599
35 Noble 0 0 6 6 4 9 3 6 13 651
36 Wayne 0 0 0 1 0 2 0 0 6 156
37 Pulaski 4 17 22 8 22 32 20 41 50 568
38 Marshall 4 11 20 7 34 52 17 45 74 1,721
39 Randolph 0 2 1 0 7 7 3 4 7 115
40 Franklin 2 3 8 9 9 15 8 21 34 210
41 Dearborn 1 0 2 2 4 7 7 8 5 182
42 Hendricks 23 71 70 51 108 161 88 164 272 2,571
43 Bartholomew 19 27 52 22 61 108 53 100 162 944
44 Wabash 2 5 6 4 8 10 9 16 28 358
45 Ripley 7 8 14 9 15 22 12 17 32 897
46 Elkhart 3 4 8 6 10 19 8 17 16 964
47 Lawrence 6 17 27 21 33 73 20 56 81 759
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48 Carroll 1 4 14 6 11 27 14 27 33 862
49 Wells 1 1 2 0 1 9 4 11 14 168
50 Fountain 0 4 1 3 4 5 4 11 8 132
51 Owen 5 14 29 19 25 69 25 66 72 1,340
52 Warren 1 7 4 3 13 15 7 23 29 116
53 Morgan 20 54 70 54 91 158 89 176 250 1,901
54 Monroe 12 19 36 26 51 89 50 74 123 1,086
55 Tippecanoe 12 15 17 17 33 41 28 43 80 776
56 Montgomery 1 6 12 11 14 24 10 26 39 716
57 Madison 20 45 56 41 88 118 60 157 222 2,560
58 Fulton 12 25 53 18 42 94 39 86 137 908
59 Miami 6 6 7 6 17 18 13 16 30 545
60 Dubois 7 18 23 8 30 30 21 30 68 1,017
61 Newton 2 1 2 6 4 9 4 8 16 201
62 Cass 13 10 33 18 46 60 29 54 88 873
63 Clay 0 3 4 10 8 12 2 10 19 732
64 Vigo 0 5 9 4 7 21 4 7 16 574
65 Jennings 3 3 4 2 2 9 4 6 11 478
66 Parke 3 5 6 5 14 11 8 15 35 347
67 Greene 10 26 33 22 43 75 41 79 122 1310
68 Putnam 8 23 30 12 38 54 28 60 97 1,592
69 St Joseph 5 6 6 4 11 16 6 18 19 950
70 Vermillion 0 1 1 1 0 3 4 5 5 65
71 Kosciusko 7 13 19 22 33 44 19 34 59 1,186
72 Warrick 1 2 4 2 7 16 4 14 16 519
73 Sullivan 1 1 3 1 4 5 1 6 12 140
74 Allen 4 21 19 17 32 40 20 40 69 987
75 Clark 8 13 16 16 27 40 32 46 61 491
76 Jefferson 2 5 8 11 26 22 17 24 51 444
77 Porter 10 14 24 22 28 47 31 50 108 892
78 Pike 2 3 12 9 18 14 9 11 34 418
79 White 13 18 33 19 36 57 26 62 96 929
80 Jasper 6 8 11 7 17 33 15 34 52 658
81 Lake 4 9 12 7 20 20 15 21 38 631
82 LaPorte 9 9 22 13 43 70 29 53 95 1,714
83 Crawford 3 3 6 9 13 12 15 8 28 649
84 Perry 1 2 6 1 8 8 4 9 9 302
85 Washington 7 5 14 9 26 52 13 25 56 726
86 Spencer 3 2 5 5 7 19 8 16 25 335
87 Harrison 1 2 4 2 6 10 13 9 11 582
88 Jackson 9 22 31 21 47 82 41 75 128 750
89 Daviess 10 14 18 18 38 51 28 51 76 636
90 Posey 1 0 1 0 0 5 2 2 1 153
91 Gibson 1 7 7 6 14 15 10 21 24 443
92 Knox 4 5 4 4 10 22 6 11 27 406
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Table B.2 Count of stop markers in every ISTDM region for all ten scenarios

Region Region Count of Stop Markers among Regions in All Scenarios

1D Name 1 2 3 4 5 6 7 8 9 10
! ﬁ]?;ter 155 358 510 358 778 | 1,121 | 575 | 1,218 | 1,876 | 17,358
2 NIRCC 8 23 27 18 41 55 29 61 98 1,663
3 ECIRPD 17 48 65 45 108 159 71 155 222 1,946
4 EIRPC 0 7 13 5 23 25 8 25 47 1,322
5 SIRPC 29 32 48 44 78 107 69 114 193 3,166
6 SR-4.6 37 69 131 75 159 285 137 259 395 3,738

Corridor

7 River Hills 30 55 82 56 128 220 117 197 310 3,260
8 SIDC 40 76 103 78 155 278 120 252 394 3,906
9 Indiana 15 24 37 70 45 101 115 65 110 219 3,374
10 ?rY:iliana 3 10 13 12 26 41 22 43 57 1,429
11 WCIEDD 12 38 53 33 71 106 47 103 184 3,450
12 TAPCTC 13 25 30 31 51 70 42 80 127 1,624
13 KIRPC 32 69 102 63 122 208 102 229 327 4,208
14 NIRPC 23 32 58 42 91 137 75 124 241 3,237
15 MACOG 19 34 53 39 88 131 50 114 168 4,821
16 NCIRPC 45 64 128 59 148 258 112 211 354 4,101
17 Region 3A 20 39 61 51 80 140 57 135 227 2,557
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B-10



: Hillzda
Chicago

Yichigan

Irera

L]
Tiriley Park

Jallet

L]
)
L
* & ®
LJII.-I'P'.'
Champaion L]
L]
L Fichm ond
® Cyiord
»

.31
#

. » ] '-
2

Frankfort

.E :u'-"m »

Radzlif

D e bar
Elzabethtoan

Figure B.8 Distribution map of stop markers for scenario #8.

B-11



Irera

Chicago

Wichigan
¥ e L N § = =
.."'":J""I -
Tinley Par? il o728 °, PP _cpher &
' L]

Diwe rebar Radzlif

Elzabethtown

Figure B.9 Distribution map of stop markers for scenario #9.

Frankfort



Michigan a : [ o
4 % e e ‘.___‘ > r.p

B e
AT AL, ) 1

?nf"*“"""

59

i

l%!ﬁ’dﬂh' ‘*

‘?ﬂ
E&E

q‘u "”‘!'I’q!

Figure B.10 Distribution map of stop markers for scenario #10.

B-13



Jolat

Terre Hauke:

i
/
1|i|_,.I||
.JP
w'.}‘ - :
-
Evansville
n
@ b
| L

1 e "\' r_"r- -
Fort.

\‘-"'"J & Knox

WOwerebaro Radclift

Elizabcthcwn

Figure B.11 Heat map analysis of stop markers for scenario #1.

BT

Frankfort

call Ry,

KENTUCHK

-

Hillzda



i : L Hillzda
= Chicago .
- |
irera Michigan
ﬂeﬁq‘; I:‘."'I I._ s
| Tinley Patk Gary. k. .
Jolat y Vi I
|
|
Kankshes | ] 3
|
|
|
| ¢
| i
. |
| 1
“Champaign !
s
n 1251 ff
‘3 -'mirm ond
A |
-
Cilord
N
-5'5:-‘_ H:
-
‘- I
r, |
'IJL,"
- i ankfar
'? N - -
<’ — . - alt B
[ Ewvansvill e R Y bl
g (o2 28, ) g
9—:} 'Jﬁk__r -3 % “"-\\ ""‘_. l‘\.!'r'J - KI‘H‘.‘ﬂ"
=/ S N Dwersbars Faclif
.-"” Etizebctheoun KENTUGCK

Figure B.12 Heat map analysis of stop markers for scenario #2.



o 1007 &
i g Hill=da
E Chicage
% |
(e ?‘; B e i
e ln .'LF‘-'.D"-."“ Eend f —
| Tinley Patk i -5 i
E: : . l
Jallet
|
I
| |
Fankakea a],lni:
|
|
|
P
|
/ |
“LChampaign I'
Jesa
g 125 F
k-
g Flllll'm ohd
£ |
R
N |
] J '
[ Cuiflord
I
|
A
5 ;
A
- ]
)
‘J".
<, 2
o
i
s
| {
L
-JP' Frankfort
L
-
o
[ N : :
i PEvanwule ™ i - “"*.r""-. call B,
4 Fort.
+E (-"\._ - .,1] ..,_,.!_“H_“\\ r,-— \v'_{: - il
=/ o A pwersbaro Radelif
.-'/; Elizabict hioen KENTUCK

Figure B.13 Heat map analysis of stop markers for scenario #3.



g FLL Hillda
4 Chicago /
= |
L L |
rora q,_-ps ——— o 2n e
e I - : HE | . I._ ——
| Tinley Park Gang = I
L udliat I
1] i
I
|
- |
Fankakes ol
|
- [
= !
|
| | |:[
| |
' |
| |
, I
“Champaion o i
s
™ 1251 ff
=
2 |k : - - Richmond
2 | ’
B
-
Cuord
I
]
T
B
P
L' I
7 |
= !
L
s 4 " i | Frankfort
-},, - s . g -
% .
1.'[ .-?1“ H"""t:'
i
o f\_ -
"\..':.. J } -‘.J:I:w.-l‘ﬁ-barn Racklif
..-r’" Enzabetheown KEMTUGCH

Figure B.14 Heat map analysis of stop markers for scenario #4.



i
z
'
14
Lo .-
rera @;
¢t
| Tinley Pa

Jolat

| @

3

i)

=
I I'

|

|

3 1
% |
5 |
o |
‘3 |
I
|
|
=
T
-
i
s
1.|'._,.Ir
_Jr"
w‘? j
-
c[ J_.'E\ransvﬂl»a 1\ ;._.
1] s -
v Oy ~_ I \rr_,*
- | st -
T s re baro
!

fi
AL Hill=da

—— i — . — " —

-

—_——— e e ——

A
5
]
ﬁ\.._
Frankfort
L /
~ N\ sl iy,
Fort
Enox
Facklifi
Elizabcthcwn KENTUCH

Figure B.15 Heat map analysis of stop markers for scenario #5.
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Figure B.18 Heat map analysis of stop markers for scenario #8.
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Figure B.19 Heat map analysis of stop markers for scenario #9.
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Figure B.20 Heat map analysis of stop markers for scenario #10.
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Figure B.21 Spatial aggregation analysis on count of stop markers at county level for scenario #1.
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Figure B.22 Spatial aggregation analysis on count of stop markers at county level for scenario #2.
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Figure B.23 Spatial aggregation analysis on count of stop markers at county level for scenario #3.
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Figure B.24 Spatial aggregation analysis on count of stop markers at county level for scenario #4.
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Figure B.25 Spatial aggregation analysis on count of stop markers at county level for scenario #5.
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Figure B.26 Spatial aggregation analysis on count of stop markers at county level for scenario #6.
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Figure B.27 Spatial aggregation analysis on count of stop markers at county level for scenario #7.
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Figure B.28 Spatial aggregation analysis on count of stop markers at county level for scenario #8.
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Figure B.29 Spatial aggregation analysis on count of stop markers at county level for scenario #9.
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Figure B.30 Spatial aggregation analysis on count of stop markers at county level for scenario #10.
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Figure B.31 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #1.
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Figure B.32 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #2.
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Figure B.33 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #3.
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Figure B.34 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #4.
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Figure B.35 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #5.
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Figure B.36 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #6.
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Figure B.37 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #7.
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Figure B.38 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #8.
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Figure B.39 Spatial aggregation analysis on count of stop markers at ISTDM region level for scenario #9.
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APPENDIX C. ASSESSMENT OF FUNDING NEEDS AND FEASIBILITY ANALYSIS OF
NEW INCOME GENERATION STREAM MODELS
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Figure C.1 Projections of generated from total vehicle registrations, including revenue from EV
registrations (for the most likely scenario).
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Figure C.2 Projections of revenue generated only from current EV fee and recovery EV fee
(for the most likely scenario).
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Figure C.3 Projections of revenue generated from total vehicle registrations, including revenue from EV
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registrations (for the optimistic and pessimistic scenarios).
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Figure C.4 Projections of revenue generated only from current EV fee and recovery EV fee
(for the optimistic and pessimistic scenarios).



APPENDIX D. EVALUATION OF STRATEGIC PARTNERSHIPS AND GUIDANCE FOR EV
PREPAREDNESS BASED ON STAKEHOLDER INPUT
Document 1. Interview agenda

A Strategic Assessment of Needs and Opportunities for Wider Adoption of Electric
Vehicles in Indiana

Evaluation of strategic partnerships and recommendations for electric vehicle preparedness
based on stakeholders’ inputs (IRB-2021-1263)

Meeting Agenda & Meeting Objectives

Meeting Objectives:

1. Discuss strategic partnerships and business models for a successful implementation and
use of electric vehicles

2. Discuss ways to promote the adoption of electric vehicles
3. Discuss impacts, important aspects or concerns related to the adoption of electric vehicles
Meeting Facilitators: Dr. Konstantina ‘“Nadia” Gkritza

Konstantinos Flaris

Theodora Konstantinou

Agenda:
L. Welcome and introductions
II. Strategic partnerships for electric vehicle adoption and ways to promote electric vehicle
(EV) adoption
I1I. Potential impacts/Important aspects/Concerns of EVs

IV.  Closing questions
V. Summary and final suggestions/comments

VI.  Adjournment

D-1



Document 2. Discussion guide

DISCUSSION GUIDE

You will be asked to provide your perspective as a representative of your agency/organization.

L

1.

11

1V.

INTRODUCTION (4-5 min)

Greeting/welcome
Purpose of interviews, general plan, agenda
Confidentiality, consent form.

STRATEGIC PARTNERSHIPS FOR ELECTRIC VEHICLE ADOPTION AND WAYS TO
PROMOTE ELECTRIC VEHICLE ADOPTION (10-12 min)

Strategic partnerships for a successful implementation and use of EVs/ Stakeholders
involved

Interrelationships between the stakeholders involved/ Needs of different stakeholders
Your relationship with other stakeholders involved regarding the efforts to
deploy/adopt EV technology

Potential business models (for EV charging infrastructure) that meet the needs of
stakeholders/ Funding for EV charging infrastructure
Stakeholders/agencies/organizations that you are partnering with or planning to partner
with, to prepare for or promote EV adoption

Ways to prepare for and accelerate/promote the adoption of EVs

POTENTIAL IMPACTS/IMPORTANT ASPECTS/ CONCERNS OF ELECTRIC
VEHICLES (10—12 min)

Policy aspects to be considered regarding the high adoption of EVs

Impact of EVs on the grid and factors affecting the effective distribution of energy to
charge EVs

Environmental and societal impacts related to the high adoption of EVs

Impact of EVs on fuel tax revenue

Current EV charging infrastructure availability, accessibility and reliability

EV adoption across different vehicle classes (light-, medium-, heavy-duty vehicles)
Other impacts/concerns regarding EVs

CLOSING QUESTIONS (3—6 min)

Your involvement in a current or past project related to EVs
Your plans for the next 5-10 years regarding electrification adoption
Your role in the adoption of electric vehicles

CLOSING (3-5 min)

Summary (what did we achieve today, what’s next)
Have we missed anything? Final thoughts/suggestions/comments?

THANK YOU (total 30+10 buffer = 40 min)
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About the Joint Transportation Research Program (JTRP)

On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State
Highway Commission to cooperate with and assist Purdue University in developing the best
methods of improving and maintaining the highways of the state and the respective counties
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP)

to reflect the state and national efforts to integrate the management and operation of various
transportation modes.

The first studies of JHRP were concerned with Test Road No. 1—evaluation of the weathering
characteristics of stabilized materials. After World War II, the JHRP program grew substantially
and was regularly producing technical reports. Over 1,600 technical reports are now available,
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue
University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and
Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp.

Further information about JTRP and its current research program is available at
http://www.purdue.edu/jtrp.

About This Report

An open access version of this publication is available online. See the URL in the citation below.
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